计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 58-66.doi: 10.11896/jsjkx.240600030
盛思柔1,2, 欧阳宵1, 陶红1, 侯臣平1
SHENG Sirou1,2, OUYANG Xiao1, TAO Hong1, HOU Chenping1
摘要: 多视图多标签学习作为一种广泛应用于图像分类、文本挖掘和生物信息学等多个领域的机器学习和数据挖掘技术,正受到研究者们的广泛关注。在此框架下,样本通常由多个视图进行表征,并且可以同时关联到多个标签。尽管已有大量方法被提出,但许多方法未能充分整合先验信息来提升学习性能,这往往导致预测性能不尽如人意。针对这一问题,文中提出了一种新的多视图多标签学习方法,称为融入标签相关性先验的多视图多标签学习(Multi-view multi-label Learning with Label Correlation Priors,MERIT)。该方法在无标签的训练数据的情况下,仅利用标签相关性先验作为弱监督信息来获取多标签预测模型,从而减少对大量标注数据的依赖。它不仅能自适应地调整不同视图的权重,还能最小化样本相似性与标签相似性之间的差异,从而更准确地描述同一组样本间的相似性。在8个多视图多标签数据集上的实验结果表明,与同类方法相比,MERIT展现出了更优越的性能。
中图分类号:
[1]CHENG Y,LI Q,WANG Y,et al.Multi-view Multi-labelLearning with View Feature Attention Allocation[J].Neurocomputing,2022,501:857-874. [2]ZHANG J,WEI G,SUN F.Synthetic Multi-view Clusteringwith Missing Relationships and Instances[J].Image and Vision Computing,2023,134:104669. [3]TANG Q,LIANG J,ZHU F.A Comparative Review on Multi-modal Sensors Fusion Based on Deep Learning[J].Signal Processing,2023,213:109165. [4]AL-SALEMI B,AYOB M,KENDALL G,et al.Multi-label Arabic Text Categorization:A Bench-mark and Baseline Comparison of Multi-label Learning Algorithms[J].Information Processing & Management,2019,56(1):212-227. [5]OUYANG X,TAO H,FAN R D,et al.Weakly SupervisedMulti label Learning Using Prior Label Correlation Information[J].Journal of Software,2023,34(4):1732-1748. [6]ZHANG M,ZHOU Z.A Review on Multi-Label Learning Algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837. [7]BOUTELL M,LUO J,SHEN X,et al.Learning Multi-labelScene Classification[J].Pattern Recognition,2004,37(9):1757-1771. [8]ZHANG M,WU L.Lift:Multi-Label Learning with Label-Specific Features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(1):107-120. [9]HUANG J,LI G,WANG S,et al.Multi-label Classification byExploiting Local Positive and Negative Pairwise Label Correlation[J].Neurocomputing,2017,257:164-174. [10]HUANG J,LI G,HUANG Q,et al.Joint Feature Selection and Classification for Multilabel Learning[J].IEEE Transactions on Cybernetics,2018,48(3):876-889. [11]MELKI G,CANO A,KECMAN V,et al.Multi-target Support Vector Regression via Cor-relation Regressor Chains[J].Information Sciences,2017,415-416:53-69. [12]HUANG J,LI G,WANG S,et al.Group Sensitive ClassifierChains for Multi-label Classifi-cation[C]//2015 IEEE International Conference on Multimedia and Expo(ICME).Turin,Italy:IEEE,2015:1-6. [13]LIU M,LUO Y,TAO D,et al.Low-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification[J].Proceedings of the AAAI Conference on Artificial Intelligence,2015,29(1):2778-2784. [14]TAN Q,YU G,WANG J,et al.Individuality- and Commonality-Based Multiview Multilabel Learning[J].IEEE Transactions on Cyber-netics,2021,51(3):1716-1727. [15]TAN Q,YU G,DOMENICONI C,et al.Incomplete Multi-View Weak-Label Learning[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,IJCAI-18.International Joint Conferences on Artificial Intelligence Organization,2018:2703-2709. [16]XING Y,YU G,DOMENICONI C,et al.Multi-Label Co-Trai-ning[C]//Proceedings of the Twenty-Seventh International Joint Con-ference on Artificial Intelligence.Stockholm,Sweden:International Joint Conferences on Artificial Intelligence Organization,2018:2882-2888. [17]ZHANG J,LI C,SUN Z,et al.Towards a Unified Multi-source-based Optimization Framework for Multi-label Learning[J].Applied Soft Computing,2019,76:425-435. [18]HE Z,CHEN C,BU J,et al.Multi-view Based Multi-label Propagation for Image Anno-tation[J].Neurocomputing,2015,168:853-860. [19]RADHIKA K,ORUGANTI V R M.Deep Multimodal Fusion for Subject-Independent Stress Detection[C]//2021 11th International Conference on Cloud Computing,Data Science & Engineering(Confluence).Noida,India:IEEE,2021:105-109. [20]LIU N,ZHANG Z,WU Y,et al.CRBSP:Prediction of Circ-RNA-RBP Binding Sites Based on Multimodal Intermediate Fusion[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2023,20(5):2898-2906. [21]NIE F,CAI G,LI X.Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [22]LIU Y,JIN R,YANG L.Semi-supervised Multi-label Learning by Constrained Non-negative Matrix Factorization [C]//AAAI.2006:421-426. [23]TAN Q,YU G,DOMENICONI C,et al.Multi-view Weak-label Learning Based on Matrix Completion[M]//Proceedings of the 2018 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2018:450-458. |
|