计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 58-66.doi: 10.11896/jsjkx.240600030

• 数据库&大数据&数据科学 • 上一篇    下一篇

融入标签相关性先验的多视图多标签学习

盛思柔1,2, 欧阳宵1, 陶红1, 侯臣平1   

  1. 1 国防科技大学理学院 长沙 410073
    2 湘潭大学数学与计算科学学院 湖南 湘潭 411105
  • 收稿日期:2024-06-03 修回日期:2024-08-21 出版日期:2025-02-15 发布日期:2025-02-17
  • 通讯作者: 侯臣平(houchenping@nudt.edu.cn)
  • 作者简介:(202221511110@smail.xtu.edu.cn)
  • 基金资助:
    国家重点研发计划(2022ZD0114803);国家自然科学基金重点项目(62136005);国家自然科学基金(61922087, 62006238);湖南省自然科学基金(2023JJ20052)

Multi-view Multi-label Learning with Label Correlation Priors

SHENG Sirou1,2, OUYANG Xiao1, TAO Hong1, HOU Chenping1   

  1. 1 School of Science,National University of Defense Technology,Changsha 410073,China
    2 School of Mathematics and Computational Science,Xiangtan University,Xiangtan,Hunan 411105,China
  • Received:2024-06-03 Revised:2024-08-21 Online:2025-02-15 Published:2025-02-17
  • About author:SHENG Sirou,born in 2001,postgraduate.Her main research interests include machine learning and pattern recognition.
    HOU Chenping,born in 1982,Ph.D,professor,is a senior member of CCF(No.21237S).His main research in-terests include pattern recognition,machine learning,data mining and computer vision.
  • Supported by:
    National Key Research and Development Program of China(2022ZD0114803),Key Program of the National Na-tural Science Foundation of China(62136005),National Natural Science Foundation of China(61922087,62006238) and Natural Science Foundation of Hunan Province,China(2023JJ20052).

摘要: 多视图多标签学习作为一种广泛应用于图像分类、文本挖掘和生物信息学等多个领域的机器学习和数据挖掘技术,正受到研究者们的广泛关注。在此框架下,样本通常由多个视图进行表征,并且可以同时关联到多个标签。尽管已有大量方法被提出,但许多方法未能充分整合先验信息来提升学习性能,这往往导致预测性能不尽如人意。针对这一问题,文中提出了一种新的多视图多标签学习方法,称为融入标签相关性先验的多视图多标签学习(Multi-view multi-label Learning with Label Correlation Priors,MERIT)。该方法在无标签的训练数据的情况下,仅利用标签相关性先验作为弱监督信息来获取多标签预测模型,从而减少对大量标注数据的依赖。它不仅能自适应地调整不同视图的权重,还能最小化样本相似性与标签相似性之间的差异,从而更准确地描述同一组样本间的相似性。在8个多视图多标签数据集上的实验结果表明,与同类方法相比,MERIT展现出了更优越的性能。

关键词: 多视图多标签, 标签相关性, 样本相似性, 先验信息, 自加权策略

Abstract: Multi-view multi-label learning,as a widely used machine learning and data mining technique in fields such as image classification,text mining,and bioinformatics,is receiving extensive attention from researchers.In this framework,samples are typically represented by multiple views and can be associated with multiple labels simultaneously.Although many methods have been proposed,many of them fail to fully integrate prior information to enhance learning performance,which often leads to unsa-tisfactory prediction performance.Aiming at this issue,this paper proposes a new multi-view multi-label learning method called multi-view multi-label learning with label correlation priors(MERIT).In the absence of labeled training data,this method acquires a multi-label prediction model by using only the prior of label correlations as weak supervision,thereby reducing the dependence on a large amount of annotated data.It not only adaptively adjusts the weights of different views but also accurately characterizes the similarity among samples of the same group by minimizing the discrepancy between sample similarity and label similarity.Experimental results on 8 multi-view multi-label datasets show that MERIT exhibits superior performance compared to similar methods.

Key words: Multi-view multi-label, Label correlation, Sample similarity, Prior information, Auto-weighted strategy

中图分类号: 

  • TP399
[1]CHENG Y,LI Q,WANG Y,et al.Multi-view Multi-labelLearning with View Feature Attention Allocation[J].Neurocomputing,2022,501:857-874.
[2]ZHANG J,WEI G,SUN F.Synthetic Multi-view Clusteringwith Missing Relationships and Instances[J].Image and Vision Computing,2023,134:104669.
[3]TANG Q,LIANG J,ZHU F.A Comparative Review on Multi-modal Sensors Fusion Based on Deep Learning[J].Signal Processing,2023,213:109165.
[4]AL-SALEMI B,AYOB M,KENDALL G,et al.Multi-label Arabic Text Categorization:A Bench-mark and Baseline Comparison of Multi-label Learning Algorithms[J].Information Processing & Management,2019,56(1):212-227.
[5]OUYANG X,TAO H,FAN R D,et al.Weakly SupervisedMulti label Learning Using Prior Label Correlation Information[J].Journal of Software,2023,34(4):1732-1748.
[6]ZHANG M,ZHOU Z.A Review on Multi-Label Learning Algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837.
[7]BOUTELL M,LUO J,SHEN X,et al.Learning Multi-labelScene Classification[J].Pattern Recognition,2004,37(9):1757-1771.
[8]ZHANG M,WU L.Lift:Multi-Label Learning with Label-Specific Features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(1):107-120.
[9]HUANG J,LI G,WANG S,et al.Multi-label Classification byExploiting Local Positive and Negative Pairwise Label Correlation[J].Neurocomputing,2017,257:164-174.
[10]HUANG J,LI G,HUANG Q,et al.Joint Feature Selection and Classification for Multilabel Learning[J].IEEE Transactions on Cybernetics,2018,48(3):876-889.
[11]MELKI G,CANO A,KECMAN V,et al.Multi-target Support Vector Regression via Cor-relation Regressor Chains[J].Information Sciences,2017,415-416:53-69.
[12]HUANG J,LI G,WANG S,et al.Group Sensitive ClassifierChains for Multi-label Classifi-cation[C]//2015 IEEE International Conference on Multimedia and Expo(ICME).Turin,Italy:IEEE,2015:1-6.
[13]LIU M,LUO Y,TAO D,et al.Low-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification[J].Proceedings of the AAAI Conference on Artificial Intelligence,2015,29(1):2778-2784.
[14]TAN Q,YU G,WANG J,et al.Individuality- and Commonality-Based Multiview Multilabel Learning[J].IEEE Transactions on Cyber-netics,2021,51(3):1716-1727.
[15]TAN Q,YU G,DOMENICONI C,et al.Incomplete Multi-View Weak-Label Learning[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,IJCAI-18.International Joint Conferences on Artificial Intelligence Organization,2018:2703-2709.
[16]XING Y,YU G,DOMENICONI C,et al.Multi-Label Co-Trai-ning[C]//Proceedings of the Twenty-Seventh International Joint Con-ference on Artificial Intelligence.Stockholm,Sweden:International Joint Conferences on Artificial Intelligence Organization,2018:2882-2888.
[17]ZHANG J,LI C,SUN Z,et al.Towards a Unified Multi-source-based Optimization Framework for Multi-label Learning[J].Applied Soft Computing,2019,76:425-435.
[18]HE Z,CHEN C,BU J,et al.Multi-view Based Multi-label Propagation for Image Anno-tation[J].Neurocomputing,2015,168:853-860.
[19]RADHIKA K,ORUGANTI V R M.Deep Multimodal Fusion for Subject-Independent Stress Detection[C]//2021 11th International Conference on Cloud Computing,Data Science & Engineering(Confluence).Noida,India:IEEE,2021:105-109.
[20]LIU N,ZHANG Z,WU Y,et al.CRBSP:Prediction of Circ-RNA-RBP Binding Sites Based on Multimodal Intermediate Fusion[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2023,20(5):2898-2906.
[21]NIE F,CAI G,LI X.Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017.
[22]LIU Y,JIN R,YANG L.Semi-supervised Multi-label Learning by Constrained Non-negative Matrix Factorization [C]//AAAI.2006:421-426.
[23]TAN Q,YU G,DOMENICONI C,et al.Multi-view Weak-label Learning Based on Matrix Completion[M]//Proceedings of the 2018 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2018:450-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!