计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600069-6.doi: 10.11896/jsjkx.240600069
伍智华, 程江华, 刘通, 蔡亚辉, 程榜, 潘乐昊
WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao
摘要: 针对激光透窗低质量成像下的人体目标检测,现有算法存在检测不准确、识别率低等问题,提出一种基于YOLOv8n优化改进的目标检测算法YOLO-TC。重新设计主干部分的特征提取模块,提升模型多尺度特征表示能力;对YOLOv8n模型做剪枝处理,优化网络结构,降低模型复杂度的同时提升检测精度;在C2f模块与解耦头(Detect)之间添加EMA注意力机制模块,增强特征融合中的语义和位置信息,提升模型的特征融合能力;使用SIoU边界框回归损失函数代替原损失函数,提升算法推理的准确性和训练速度。实验结果表明,改进后的模型在激光透窗成像数据集中的精确度(Precision)、召回率(Recall)和平均精度均值(mAP)相比原模型分别提高了7.7%,5.9%和7.0%,模型大小缩减了34.6%,便于后续边缘端的硬件部署。
中图分类号:
[1]HU Y H,ZHAO L D.Research status and prospect of laser imaging processing technology[J].InfraredandLaser Engineering,2023,52(6):9-29. [2]ZHOU L X,HAN X D,YE S W,et al.Efficiency testing method for the echo receiving system of laser ranging station[J].Optics and Lasers in Engineering,2024,176:108061. [3]YANG A F.Application of Short-wave infrared laser in photoelectric reconnaissance and anti-reconnaissance[J].Applied Optics,2019,40(6):937-943. [4]JIANG T.Research on high-speed through-window imagingtechnology of dynamic target under strong reflection interfe-rence[D].Beijing:University of Science and Technology Beijing,2021. [5]ZHANG S.Research on target detection algorithm based onconvolutional neural network under laser active imaging [D].University of Chinese Academy of Sciences,2021. [6]LI Z T,CHU Y X,CHEN Y.Fire and smoke detection technology based on laser range gating imaging[J].Fire Science and Technology,2023,42(9):1201-1204. [7]WANG S,PAN Y Z,LIU Y,et al.Research on improving image quality of laser active imaging in fog[J].Infrared and Laser Engineering,2013,42(9):2392-2396. [8]ZHAO Z J,TAN Y G,LIU P,et al.Research on Intelligent recognition system of underwater long-range target based on laser gating imaging technology[J].Integration Technology,2023,12(2):39-52. [9]REDMON J,DIVVALA S,GIRSHICK R,et al.You onlylookonce:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [10]DAVID A,DANIEL M,DROR R,et al.Pressure estimation via measurement of reduced light scattering coefficient by oblique laser incident reflectometry[J].Journal of Laser Applications,2024,36(1):012028. [11]SHANGGAUN M,LIAO Z Y,GUO Y R,et al.Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar[J].Optics Express,2023,31(16):25398-25414. [12]PANG Z H,SONG C T,LIU B H.A study on accurate ranging method of a dual-wavelength orthogonal FMCW laser fuze in a complex aerosol environment[J].IEEE Sensors Journal,2024,24(7):113.6-113.15. [13]ANDREA T,BORIS M.Robust attenuated total reflection infrared spectroscopic sensors based on quantum cascade lasers for harsh environments[J].IEEE Sensors Journal,2024,24(1):814-821. [14]ROSS G,JEFF D,TREVOR D,et al.Region-Based Convolutional Networks for Accurate Object Detection and Segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,38(1):142-158. [15]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [16]KAIMING H,GEORGI G,PIOTR D,et al.Mask R-CNN[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(2):386-397. [17]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]//Computer Vision-ECCV 14th European Conference.Amsterdam,The Netherlands,2016:21-37. [18]TERVEN J,CORDOVA-ESPARZA D.A Comprehensive Re-view of YOLO:From YOLOv1 and Beyond[J].arXiv:2304.00501,2023. [19]LIU Z,LI J G,SHEN Z Q,HUANG G,et al.Learning Efficient Convolutional Networks through Network Slimming[C]//IEEE International Conference on Computer Vision.Venice,Italy,2017:2755-2763. [20]OUYANG D L,HE S,ZHANG G Z,et al.Efficient multi-scale attention module with cross-spatial learning[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Rhodes Island,Greece,2023:1-5. [21]GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[J].arXiv:2205.12740,2022. [22]XIE Y M,ZHANG L W,YU X Y,et al.YOLO-MS:Multispectral Object Detection via Feature Interaction and Self-Attention Guided Fusion[J].IEEE Transactions on Cognitive and Deve-lopmental Systems,2023,15(4):2132-2143. |
|