计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 256-263.doi: 10.11896/jsjkx.240600123
陈亚当1, 高宇轩1, 卢楚翰1, 车洵2
CHEN Yadang1, GAO Yuxuan1, LU Chuhan1, CHE Xun2
摘要: 小样本图像分类解决了传统图像分类在数据量不足时表现不佳的问题,其难点在于如何充分利用稀缺的样本标签数据预测真实的特征分布。一些最新方法采用随机遮挡或混合插值等数据增强方法来提高数据标签样本的多样性和泛化性,但仍然存在以下问题:1)随机遮挡具有不确定性,会出现完全遮挡或暴露前景的情况,导致样本关键信息丢失;2)由于混合插值后的数据分布过于平均,模型难以准确区分不同类别之间的差异和边界。针对上述问题,提出一种基于显著性掩模混合的数据增强方法。首先,通过视觉特征隐蔽融合和置信度裁剪选择策略,对图像关键特征信息进行自适应的筛选与保留;其次,采用视觉特征显著性融合方法,计算出图片中各个区域的重要性,引导图片融合,增加所得图片的多样性和丰富性,使类别边界更加清晰。所提方法在多个标准小样本图像分类数据集(miniImageNet,tieredImageNet,Few-shot CIFAR100和Caltech-UCSD Birds-200)上表现出色,优于最先进方法约0.2%~1%,在小样本图像分类中具有显著的潜力和优势。
中图分类号:
[1]CHEN Y,LIU Z,XU H,et al.Meta-Baseline:E-xploring simple meta-learning for few-shot le-arning[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:9042-9051. [2]PADMANABHAN D,GOWDA S,ARANI E,et al.Ls-fsl:Le-veraging shape information in few-shot learning[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2023:4971-4980. [3]QIAO Q,XIE Y,ZENG Z Y,et al.Talds-net:Task aware adaptive local descriptors selection for few-shot image classification[J].arXiv:2312.05449,2023. [4]SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[J].arXiv:1703.05275.2017. [5]ZHANG C,CAI Y,LIN G,et al.DeepEMD:Differentiable earth mover's distance for few-shot learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5632-5648. [6]CHEN H,LI H,LI Y,et al.Multi-level metric learning for few-shot image recognition[C]//International Conference on Artificial Neural Networks.Cham:Springer International Publishing,2022:243-254. [7]DENG G L,HUANG G H,CHEN Z Y.Category DecoupledFew-Shot Classifi-cation for Graph Neural Network[J].Computer Engineering and Applications,2024,60(2):129-136. [8]LIU C,FU Y,XU C,et al.Learning a few-shot embedding modelwith contrastive learning[C]//Procee-dings of the AAAI Conference On Arti-Ficial Intelligence.2021:8635-8643. [9]MANGLA P,KUMARI N,SINHA A,et al.Charting the right manifold:Manifold mixup for few-shot learning[C]//Procee-dings of the IEEE/CVF Winter Conference on Applications of Co-Mputer Vision.2020:2218-2227. [10]ZHUO L,FU Y,CHEN J, et al. Tgdm: Target guided dynamic mixup for cross-domain few-shot learning[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:6368-6376. [11]ZHANG H Y,CISSE M,DAUPHIN Y N,et al.mixup:Beyond empirical risk minimization[J].arXiv:1710.09412,2017. [12]YUN S,HAN D,OH S J,et al.Cutmix:Regular-ization strategy to train strong classifiers with localizable features[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.2019:6023-6032. [13]KIM J H,CHOO W,SONG H O.Puzzle mix:Exploiting saliency and local statistics for optimal mixup[C]//International Conference on Machine Learning.PMLR,2020:5275-5285. [14]PENG T,FENG L,DU Y D,et al.Meta-cosine loss for few-shot image classification[J].Journal of Image and Graphics,2024,29(2):506-519. [15]GUO L,LIU B,LI W G,ea al.A Few-Shot Image Classification Method by Hard Pairwise-Based Excitation[J].Journal of Computer-Aided Design & Computer Graphics,2024,26(6):895-903. [16]KANG D,KWON H,MIN J,et al.Relational em-bedding for few-shot classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:8822-8833. [17]AFRASIYABI A,LALONDE J F,GAGNÉ C.Mixture-based feature space learning for few-shot image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer ViSion.2021:9041-9051. [18]YANG Z Y,WANG J H,ZHU Y Y.Few-shot classificationwith contrastive learning[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:293-309. [19]YANG L,LI L,ZHANG Z,et al.Dpgn:Distribution propagation graph network for few-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRe-cognition.2020:13390-13399. [20]YANG S,LIU L,XU M.Free lunch for few-shot learning:Distribution calibration[J].arXiv:2101.06395,2021. [21]AFRASIYABI A,LALONDE J F,GAGNÉ C.Associative alignment for few-shot image classification[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part V 16.Springer International Publishing,2020:18-35. [22]ZIKO I,DOLZ J,GRANGER E,et al.Laplacian regularized few-shot learning[C]//International Conference on Machine Learning.PMLR,2020:11660-11670. [23]AFRASIYABI A,LAROCHELLE H,LALONDE J F,et al.Matching feature sets for few-shot image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:9014-9024. [24]HE K M,FAN H Q,WU Y X,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [25]HENDRYCKS D,MU N,CUBUK E D,et al.Augmix:A simple data processing method to improve robustness and uncertainty[J].arXiv:1912.02781,2019. [26]CHEN Z,FU Y,WANG Y X,et al.Image deformation meta-networks for one-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:8680-8689. [27]VERMA V,LAMB A,BECKHAM C,et al.Manifold mixup:Better representations by interpolating hidden states[C]//International Conference on Machine Learning.PMLR,2019:6438-6447. [28]YANG T H,GU Z H,MA L Z.Style-aware Cross Domain Few-Shot Anomaly Detection[J/OL].http://kns.cnki.net/kcms/detail/11.2925.TP.20240926.1526.003.html. [29]CHEN Y D,ZHAO Y B,WU E H,et al.Robust Semi-supervised Video Object Segmentation with Dynamic Embedding[J].https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2023.0354 [30]LIU H,TIAN Z,QIU J,et al.Survey on Few-shot for Malware Detection [J].Journal of Software,2024,35(8):3785-3808. [31]LI F,JIA D L,YAO Y M,et al.Graph Neural Network Few Shot Image Classification Network Based on Residual and Self-attention Mechanism [J].Computer Science,2023,50(S1):276-380. [32]CHEN Y D,HAO C Y,YANG Z X,et al.Fast Target-aware Learning for Few-shot Video Object Segmentation[J].SCIENCE CHINA Information Sciences,2022,65(8):182104. [33]CHEN Y D,JIANG R,ZHENG Y H,et al.Dual branch multi-level semantic learning for few-shot segmentation[J].IEEE Transactions on Image Processing,2024,33:1432-1447. [34]CHEN Y,CHEN S,YANG Z X,et al.Learning self-targetknowledge for few-shot segmentation[J].Pattern Recognition,2024,149:110266. [35]CHEN Y D,CHEN L R,YU W B,et al.Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion[J].Journal of Computer-Aided Design & Computer Graphics,2022,34(10):1542-1549. |
|