计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 104-111.doi: 10.11896/jsjkx.240700041
李宗民, 戎光彩, 白云, 徐畅, 鲜世洋
LI Zongmin, RONG Guangcai, BAI Yun, XU Chang , XIAN Shiyang
摘要: 三维目标检测是自动驾驶中最关键的技术之一,基于激光雷达的三维目标检测通常在点云构建的场景中进行。目前的三维检测方法不能充分地利用点云的结构信息,这将导致目标物体的误检和漏检。为此,提出了基于动态加权图卷积的DEG R-CNN。首先,在RoI中对节点设置主邻点和次邻点,为目标物体构建点云的图结构,恢复物体的几何信息;然后,在图中利用Gaussian函数和一维卷积,高效地聚合点云的结构特征;最后,使用交叉注意力机制自适应地融合不同粒度的图像特征,为点云补充图像语义信息。在KITTI数据集上进行实验,验证了各个模块的有效性,三维目标检测的3D mAP达到88.80%,相比基线模型提高了1.22%。同时,对三维目标检测的结果进行了可视化,并对可视化结果进行了分析。
中图分类号:
[1]SHI S S,WANG X G,LI H S.PointRCNN:3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:770-779. [2]YANG Z T,SUN Y N,LIU S,et al.3DSSD:Point-based 3D single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11040-11048. [3]SHI S S,GUO C X,JIANG L,et al.PV-RCNN:Point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10529-10538. [4]DENG J J,SHI S S,LI P W,et al.Voxel R-CNN:Towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:1201-1209. [5]SHI W,RAJKUMAR R.Point-GNN:Graph neural network for 3D object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1711-1719. [6]YANG H L,LIU Z L,WU X P,et al.Graph R-CNN:Towards accurate 3D object detection with semantic-decorated local graph[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:662-679. [7]QI C R,SU H,MO K,et al.PointNet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [8]QI C R,YI L,SU H,et al.PointNet++:Deep hierarchical feature learning on point sets in a metric space[J].arXiv:1706.02413,2017. [9]ZHOU Y,TUZEL O.Voxelnet:End-to-end learning for pointcloud based 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4490-4499. [10]YAN Y,MAO Y X,LI B.SECOND:Sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337. [11]LANG A H,VORA S,CAESAR H,et al.PointPillars:Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12697-12705. [12]VORA S,LANG A H,HELOU B,et al.PointPainting:Sequential fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4604-4612. [13]WANG C W,MA C,ZHU M,et al.PointAugmenting:Cross-modal augmentation for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11794-11803. [14]LI Y,YU A W,MENG T,et al.DeepFusion:Lidar-camera deep fusion for multi-modal 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:17182-17191. [15]CHEN Z,LI Z,ZHANG S,et al.AutoAlign:Pixel-instance feature aggregation for multi-modal 3D object detection[J].arXiv:2201.06493,2022. [16]CHEN Z,LI Z,ZHANG S,et al.Deformable feature aggregation for dynamic multi-modal 3D object detection[C]//European Conference on Computer Vision.Cham:Springer Nature Swit-zerland,2022:628-644. [17]LI X,MA T,HOU Y N,et al.LoGoNet:Towards accurate 3D object detection with local-to-global cross-modal fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:17524-17534. [18]ZHOU X Y,WANG D Q,KRÄHENBÜHL P.Objects as points[J].arXiv:1904.07850,2019. [19]WANG Y,SUN Y B,LIU Z W,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions on Graphics(tog),2019,38(5):1-12. [20]KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2018:1-8. [21]LIANG M,YANG B,CHEN Y,et al.Multi-task multi-sensorfusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7345-7353. [22]CHEN X Z,MA H M,WAN J,et al.Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1907-1915. [23]GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:The kitti dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237. [24]HE C H,ZENG H,HUANG J Q,et al.Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11873-11882. [25]ZHOU C,ZHANG Y N,CHEN J X,et al.OcTr:Octree-based transformer for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5166-5175. [26]YOO J H,KIM Y,KIM J,et al.3D-CVF:Generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection[C]//Computer Vision-ECCV 2020:16th European Conference.Springer International Publishing,2020:720-736. [27]PANG S,MORRIS D,RADHA H.CLOCs:Camera-LiDAR object candidates fusion for 3D object detection[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2020:10386-10393. [28]HUANG T T,LIU Z,CHEN X W,et al.EPNet:Enhancing point features with image semantics for 3D object detection[C]//Computer Vision-ECCV 2020:16th European Conference.Springer International Publishing,2020:35-52. [29]CHEN Y K,LI Y W,ZHANG X Y,et al.Focal sparse convolutional networks for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5428-5437. [30]LI Y W,QI X J,CHEN Y K,et al.Voxel field fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:1120-1129. [31]MAHMOUD A,HU J S K,WASLANDER S L.Dense voxel fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:663-672. [32]WANG M L,ZHAO L,YUE Y F.PA3DNet:3-D vehicle detection with pseudo shape segmentation and adaptive camera-LiDAR fusion[J].IEEE Transactions on Industrial Informatics,2023,19(11):10693-10703. [33]WANG C H,CHEN H W,CHEN Y,et al.VoPiFNet:Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(8):8527-8537. |
|