计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 195-203.doi: 10.11896/jsjkx.240900086
袁右文, 金朔, 赵玺
YUAN Youwen, JIN Shuo, ZHAO Xi
摘要: 三维物体之间的空间关系分析对于多物体场景的理解及合成具有重要意义。传统的三维空间关系分析方法计算物体之间的交互平分面(Interaction Bisector Surface,IBS)并进一步提取其特征。然而,当输入为单视角扫描点云时,由于数据完整性的缺失,使用传统方法往往难以计算出准确的交互平分面,从而极大地影响了下游任务(如场景分类、分析、合成等)。针对此问题,提出一种面向单视角扫描点云的交互平分面估计方法,使用神经网络框架IBSNet估计双物体的差分无符号距离场,然后基于这种隐式距离场的表示提取交互平分面。在ICON数据集上对该方法与其他方法(几何方法、IMNet、Grasping Field)进行了对比实验,并测试了各个方法在面对不同残缺程度和噪声程度的单视角扫描点云时的鲁棒性。实验结果表明,该方法对于残缺的单视角扫描点云有一定的鲁棒性,可以有效地估计出形状之间的交互平分面。
中图分类号:
[1]HUANG Z Y,XU J Z,DAI S S,et.al.NIFT:Neural interaction field and template for object manipulation[C]//2023 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2023:1875-1881. [2]SHE Q J,HU R Z,XU J Z,et.al.Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction[J].ACM Transactions on Graphics,2022,41(4):1-14. [3]ZHAO X,WANG H,KOMURA T,et.al.Indexing 3D Scenes Using the Interaction Bisector Surface[J].ACM Transactions on Graphics,2014,33(3):1-14. [4]PARK J J,FLORENCE P,STRAUB J,et al.DeepSDF:Lear-ning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:165-174. [5]CHEN Z Q,ZHANG H.Learning implicit fields for generative shape modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5939-5948. [6]SITZMANN V,ZOLLHÖFER M,WETZSTEIN G,et.al.Scene representation networks:Continuous 3d-structure-aware neural scene representations[J].arXiv:1906.01618,2019. [7]WANG P,LIU L J,LIU Y,et.al.NeuS:Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction[C]//NIPS 2021.2021:27171-27183. [8]FU Q C,XU Q S,ONG Y S,et al.Geo-Neus:Geometry-consistent neural implicit surfaces learning for multi-view reconstruction[J].Advances in Neural Information Processing Systems,2022,35:3403-3416. [9]CHIBANE J,MIR A,PONS-MOLL G.Neural unsigned distancefields for implicit function learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.2020:21638-21652. [10]HU R,ZHU C,VAN KAICK O,et al.Interaction context(ICON):towards a geometric functionality descriptor[J].ACM Transactions on Graphics,2015,34(4):1-12. [11]WU Z,SONG S,KHOSLA A,et al.3D ShapeNets:A Deep Re-presentation for Volumetric Shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1912-1920. [12]MATURANA D,SCHERER S.VoxNet:A 3D ConvolutionalNeural Network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2015:922-928. [13]RIEGLER G,ULUSOY A O,GEIGER A.OctNet:LearningDeep 3D Representations at High Resolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:3577-3586. [14]CHARLES R Q,SU H,KAICHUN M,et al.PointNet:Deep Learning on Point Sets for 3D Classificationand Segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:652-660. [15]ZHAO H,JIANG L,JIA J,et al.Point Transformer.[C]//2021 IEEE/CVF International Conferenceon Computer Vision(ICCV).2021:16259-16268. [16]GUO M H,CAI J X,LIU Z N,et al.PCT:Point cloud transformer[J].Computational Visual Media,2021(7):187-199. [17]LIU M Y,YANG Q M,HU G H,et al.3D point cloud object detection algorithm based on Transformer[J].Journal of Northwestern Polytechnical University,2023,41(6):1190-1197. [18]LIU X H,BAI Z Y,XU Z,et al.Multi-guided Point CloudRegistration Network Combined with Attention Mechanism[J].Computer Science,2024,51(2):142-150. [19]KARUNRATANAKUL K,YANG J,ZHANG Y,et al.Gras-ping Field:Learning Implicit Representations forHuman Grasps[C]//2020 International Conference on 3D Vision(3DV).2020:333-344. [20]ZHAO X,ZHANG B,WU J,et al.Relationship-Based PointCloud Completion[J].IEEE Transactions on Visualization and Computer Graphics,2022,28(12):4940-4950. [21]HUANG Z Y,DAI S S,XU K,et.al.DINA:Deformable INteraction Analogy[J].Graphical Models,2024,133:101217. [22]XUAN H B,LI X Z,ZHANG J S,et al.Narrator:TowardsNatural Control of Human-Scene Interaction Generation via Relationship Reasoning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:22268-22278. [23]ZHAO X,HU R,GUERRERO P,et al.Relationship templates for creating scene variations[J].ACM Transactions on Gra-phics,2016,35(6):1-13. [24]HUANG Z,XU J,DAI S,et al.NIFT:Neural Interaction Field and Template for Object Manipulation [C]//2023 IEEE International Conference on Robotics and Automation(ICRA).2022:1875-1881. [25]WALD J,DHAMO H,NAVAB N,et al.Learning 3d semantic scene graphs from 3D indoor reconstructions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:3961-3970. [26]LIU Y Y,LONG C J,ZHANG Z X,et al.Explore Contextual Information for 3D Scene Graph Generation[J].IEEE Transactions on Visualization and Computer Graphics,2023,29(12):5556-5568. [27]CHABRA R,LENSSEN J E,ILG E,et al.Deep Local Shapes:Learning Local SDF Priors for Detailed 3D Reconstruction[C]//Computer Vision-ECCV 2020,Lecture Notes in Computer Science.2020:608-625. [28]CHEN Z,ZHANG H.Learning Implicit Fields for GenerativeShape Modeling[C]//2019 IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition(CVPR).2019:5939-5948. [29]YUAN W,KHOT T,HELD D,et al.PCN:Point Completion Network[C]//2018 International Conference on 3D Vision(3DV).2018:728-744. |
|