计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 232-240.doi: 10.11896/jsjkx.240700116

• 数据库&大数据&数据科学 • 上一篇    下一篇

面向长尾异构数据的个性化联邦学习框架

吴家皋, 易婧, 周泽辉, 刘林峰   

  1. 南京邮电大学计算机学院 南京 210023
    江苏省大数据安全与智能处理重点实验室 南京 210023
  • 收稿日期:2024-07-18 修回日期:2024-10-17 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 吴家皋(jgwu@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金(62272237,61872191)

Personalized Federated Learning Framework for Long-tailed Heterogeneous Data

WU Jiagao, YI Jing, ZHOU Zehui, LIU Linfeng   

  1. School of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
    Jiangsu Key Laboratory of Big Data Security & Intelligent Processing,Nanjing 210023,China
  • Received:2024-07-18 Revised:2024-10-17 Online:2025-09-15 Published:2025-09-11
  • About author:WU Jiagao,born in 1969,Ph.D,associate professor,is a member of CCF(No.12107M).His main research interests include computer network,edge computing and artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(62272237,61872191).

摘要: 针对数据长尾分布和异构性引起的联邦学习模型性能下降的问题,提出了一种新的个性化联邦学习框架——平衡的个性化联邦学习(Balanced Personalized Federated Learning,BPFed),将整个联邦学习过程分为基于个性化联邦学习的表示学习和基于全局特征增强的个性化分类器再训练两个阶段。在第一阶段,首先采用Mixup策略进行数据增强,然后提出基于参数解耦的个性化联邦学习特征提取器训练方法,在优化特征提取器性能的同时减少通信开销;在第二阶段,首先提出新的基于全局协方差矩阵的类级特征增强方法,然后提出基于样本权重的标签平滑损失函数对客户端分类器进行平衡的个性化再训练,以纠正头类置信过度并提高尾类的泛化能力。大量的实验结果表明,在不同的数据长尾分布和异构性设置下,BPFed模型的准确度相比其他代表性相关算法均有明显提升。此外,消融和超参数影响实验也进一步验证了所提方法和优化策略的有效性。

关键词: 个性化联邦学习, 长尾分布, 数据异构性, 参数解耦, 特征增强, 优化策略

Abstract: Aiming at the problem of model performance degradation in federated learning caused by long tail distribution and he-terogeneity of data,a novel personalized federated learning framework called Balanced Personalized Federated Learning(BPFed) is proposed,where the whole federated learning process is divided into two stages:representation learning based on personalized fe-derated learning and personalized classifiers retraining based on global feature augmentation.In the first stage,the Mixup strategy is adopted firstly for data augmentation,and then a feature extractor training method is proposed based on the personalized fede-rated learning with parameter decoupling to optimize the performance of the feature extractor while reducing the communication cost.In the second stage,a new class-level feature augmentation method based on global covariance matrix is proposed firstly,and then the classifiers of clientsare retaines individually in balance with a proposed label-aware smoothing loss function based on sample weight to correct the overconfidence for head classes and boost the generalization ability for tail classes.Extensive experimental results show that the model accuracy of BPFed is significantly improved compared with other representative related algorithms under different settings of data long-tailed distributions and heterogeneities.Moreover,the effectiveness of the proposed methods and optimization strategies is further verified by the experiments on ablation and hyperparameter influence.

Key words: Personalized federated learning, Long-tailed distribution, Data heterogeneity, Parameter decoupling, Feature augmentation, Optimization strategy

中图分类号: 

  • TP393
[1]MCENROE P,WANG S,LIYANAGE M.A survey on the convergence of edge computing and AI for UAVs:Opportunities and challenges[J].IEEE Internet of Things Journal,2022,9(17):15435-15459.
[2]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-efficient learning of deep networks from decentralized data[C]//Proceedings of the20th International Conference on Artificial Intelligence and Statistics(AISTATS).New York:PMLR,2017:1273-1282.
[3]ZHANG Y,KANG B,HOOI B,et al.Deep long-tailed learning:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):10795-10816.
[4]KANG B,XIE S,ROHRBACH M,et al.Decoupling Representation and Classifier for Long-Tailed Recognition[C]//Procee-dings of International Conference on Learning Representations.Washington DC:ICLR,2020:1-16.
[5]LIN T,GOYAL P,GIRSHICK R,et al.Focalloss for dense object detection[C]//Proceedings of International Conference on Computer Vision(ICCV).Piscataway,NJ:IEEE,2017:2980-2988.
[6]ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:Beyond empirical risk minimization[C]//Proceedings of International Conference on Learning Representations.Washington DC:ICLR,2018:1-13.
[7]YIN X,YU X,SOHN K,et al.Featuretransfer learning for face recognition with under-represented data[C]//Proceedings of International Conference on Computer Vision and Pattern Re-cognition(CVPR).Piscataway,NJ:IEEE,2019:5704-5713.
[8]SHANG X,LU Y,HUANG G,et al.Federatedlearning on he-terogeneous and long-tailed data via classifier re-training with federated features[C]//Proceedings of International Joint Conference on Artificial Intelligence.Freiburg:IJCAI,2022:2218-2224.
[9]SHUAI X,SHEN Y,JIANG S,et al.BalanceFL:Addressingclass imbalance in long-tail federated learning[C]//Proceedings of the 21st ACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN).Piscataway,NJ:IEEE,2022:271-284.
[10]ARIVAZHAGAN M G,AGGARWAL V,SINGH A K,et al.Federated lear-ning with personalization layers[J].arXiv:1912.00818,2019.
[11]LU Y,QIAN P,HUANG G,et al.Personalized federated lear-ning on long-tailed data via adversarial feature augmentation[C]//Proceedings of 2023 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Piscataway,NJ:IEEE,2023:1-5.
[12]ZHONG Z,CUI J,LIU S,et al.Improving Calibration for Long-Tailed Recognition[C]//Proceedings of International Confe-rence on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2021:16489-16498.
[13]WANG X M,FANG R.Device selection in federated learningunder class imbalance[J].Application Research of Computers,2021,38(10):2968-2973.
[14]WU F,SONG Y B,JI Y M,et al.Contribution-based federated learning approach for global imbalanced problem[J].Computer Science,2023,50(12):343-348.
[15]LI T,SAHU A K,ZAHEER M,et al.Federated Optimization inHeterogeneous Networks[C]//Proceedings of International Conference on Machine Learning Systems(ICML).New York:IMLS,2020:429-450.
[16]KARIMIREDDY S P,KALE S,MOHRI M,et al.Scaffold:Stochastic controlled averaging for federated learning[C]//Proceedings of International Conference on Machine Learning(ICML).New York:IMLS,2020:5132-5143.
[17]LI Q,HE B,SONG D,et al.Model-Contrastive FederatedLearning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2021:10713-10722.
[18]ACAR D A E,ZHAO Y,NAVARRO R M,et al.FederatedLearning Based on Dynamic Regularization[C]//Proceedings of International Conference on Learning Representations.Wa-shington DC:ICLR,2021:1-14.
[19]CHAI Z,ALI A,ZAWAD S,et al.Tifl:A tier-based federated learning system[C]//Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing(HPDC).New York:ACM,2020:125-136.
[20]ZHAO Y,LI M,LAI L,et al.Federated learning with non-IID data[J].arXiv:1806.00582,2018.
[21]LUO M,CHEN F,HU D,et al.No fear of heterogeneity:Classifier calibration for federated learning with non-IID data[J].Advances in Neural Information Processing Systems,2021,34:5972-5984.
[22]LIU Y,WU X,LIU C K.Research onpersonalized federatedlearning algorithm in industrial Internet of things[J].Journal of Chinese Computer Systems,2025,46(1):209-216.
[23]KRIZHEVSKY A.Learning multiple layers of features from tiny images[R].University of Toronto,2009.
[24]CAO K,WEI C,GAIDON A,et al.Learningimbalanced datasets with label-distribution-aware margin loss[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems(NeurIPS).New York:PMLR,2019:1-12.
[25]HSU T M H,QI H,BROWN M.Measuring the effects of non-identical data distribution for federated visual classification[J].arXiv:1909.06335,2019.
[26]HE K,ZHANG X,REN S,et al.Deepresidual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway,NJ:IEEE,2016:770-778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!