计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400145-8.doi: 10.11896/jsjkx.240400145

• 人工智能 • 上一篇    下一篇

多策略多维度融合改进的河马优化算法

任庆欣, 冯锋   

  1. 宁夏大学信息工程学院 银川 750021
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 冯锋(feng_f@nxu.edu.cn)
  • 作者简介:(1820980600@qq.com)
  • 基金资助:
    宁夏自然科学基金重点项目(2024AAC02011)

Hippo Optimization Algorithm Improved by Multi-strategy and Multi-dimensional Fusion

REN Qingxin, FENG Feng   

  1. School of Information Engeineering,Ningxia University,Yinchuan 750021,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:REN Qingxin,born in 1999,postgraduate.His main research interests include Internet of Things technology and ap-plications.
    FENG Feng,born in 1971,professor.His main research interests include information system engineering and application and so on.
  • Supported by:
    Key Project of Ningxia Natural Science Foundation(2024AAC02011).

摘要: 针对河马优化算法(Hippopotamus Optimization Algorithm,HO)收敛速度慢、易陷入局部寻优以及对算法参数有依赖性等问题,文中提出一种多策略多维度融合改进的河马优化算法(Improved Hippo Optimization Algorithm Based on Multi-strategy and Multi-dimension Fusion,MSMDHO)。首先,利用准反向学习的映射方式生成或者扰动初始化种群,提高种群的空间分布质量。其次,引入了正余弦优化策略,将其应用在HO算法第一阶段中的描述雌性或未成熟河马种群位置更新公式中,利用其震荡性不断检测和扰动,从而达到更好的优化效果。最后,在HO的抵御捕食者阶段和逃离捕食者阶段分别使用切线飞行策略和PID搜索因子,避免种群陷入局部寻优,提高全体收敛速度。利用MSMDHO算法、HO算法、多元宇宙算法(Multi-verse Optimization,MVO)、鹈鹕优化算法(Pelican Optimization Algorithm,POA)、鼠群优化器(Rat Swarm Optimizer,RSO)、旗鱼优化算法(Sailfish Optimizer,SFO)以及粒子群算法(Particle Swarm Optimization,PSO)对8个测试函数分别进行测试,结果表明,MSMDHO算法在全局搜索能力和收敛速度的稳定性和先进性都领先其他算法。

关键词: 河马优化算法, 准反向学习, 正余弦优化策略, 切线飞行, PID搜索因子

Abstract: This paper proposes an improved hippo optimization algorithm based on multi-strategy and multi-dimension fusion(MSMDHO) to address various issues of the original hippopotamus optimization algorithm(HO) such as slow convergence speed,susceptibility to local optima,and reliance on algorithm parameters.Firstly,a mapping technique using quasi-reverse learning is employed to generate or perturb the initial population,enhancing the quality of spatial distribution within the population.Secondly,a sine cosine optimization strategy is introduced and applied in the first stage of HO to describe the oscillatory behavior of female or immature hippos in the population positioning formula,using its oscillability to constantly detection and perturbation to achieve better optimization results.Finally,in the defense against predators and fleeing from predators stages of HO,tangent flight strategy and PID search factors are utilized to prevent the population from falling into local optima and improve overall convergence speed.In this paper,the MSMDHO algorithm,HO algorithm,multi-verse optimization(MVO)algorithm,pelican optimization algorithm(POA),rat swarm optimizer(RSO) algorithm,sailfish optimizer(SFO) algorithm,and particle swarm optimization(PSO) algorithm are tested on 8 benchmark functions.Results demonstrate that the MSMDHO algorithm outperforms other algorithms in terms of global search capability,convergence speed stability,and advancement.

Key words: Hippo optimization algorithm, Quasi reverse learning, Sine cosine optimization strategy, Tangent flight, PID search factor

中图分类号: 

  • TP301.6
[1]STORN R,KENNETH P.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997(11):341-359.
[2]KARABOGA D,BAHRIYE B.A powerful and efficient algo-rithm for numerical function optimization:artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007(39):459-471.
[3]XUE B,FU W L,ZHANG M J.Differential evolution(DE) for multi-objective feature selection in classification[C]//Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation.2014.
[4]ABUALIGAH L,AL-QANESS M A A,ABD ELAZIZ M,et al.The non-monopolize search(NO):a novel single-based local search optimization algorithm[J].Neural Computing and Applications,2024,36(10):5305-5332.
[5]AMIRI M H,HASHJIN N M,NAJAFABADI M K,et al.Hippopotamus optimization algorithm:a novel nature-inspired optimization algorithm[J].Scientific Reports,2024,14(1):5032.
[6]EWEES AHMED A,MOHAMED A E,HOUSSEIN E H.Improved grasshopper optimization algorithm using opposition-based learning[J].Expert Systems with Applications,2018(112):156-172.
[7]TIZHOOSH H R.Opposition-Based Learning:A New Scheme for Machine Intelligence[C]//International Conference on International Conference on Computational Intelligence for Modelling,Control & Automation.IEEE,2005:695-701.
[8]XING Y F,et al.An Automatic Pipe-Routing Algorithm Based on Improved Sine Cosine Algorithm for Complex Space[J].Journal of Aerospace Engineering,2023,36(6):04023082.
[9]AKAY R,MUSTAFA Y Y.Multi-strategy and self-adaptivedifferential sine-cosine algorithm for multi-robot path planning[J].Expert Systems with Applications,2023(232):120849.
[10]RAJ S,SAURAV,SHIVA C K,et al.A novel chaotic chimp sine cosine algorithm Part-I:For solving optimization problem[J].Chaos,Solitons & Fractals,2023(173):113672.
[11]YU,X W,WEI P,YONG L.WSN node localization algorithm of sparrow search based on elite opposition-based learning and Levy flight[J].Telecommunication Systems,2023,84(4):521-531.
[12]LAYEB A.Tangent search algorithm for solving optimizationproblems[J].Neural Computing and Applications,2022,34(11):8853-8884.
[13]GAO Y S.PID-based search algorithm:a novel metaheuristic algorithm based on PID algorithm[J].Expert Systems With Applications,2023(232):120886.
[14]MIRJALILI I,SEYED M M,ABDOLREZA H.Multi-verse optimizer:a nature-inspired algorithm for global optimization[J].Neural Computing and Applications,2016(27):495-513.
[15]TROJOVSKÝ P,MOHAMMAD D.Pelican optimization algo-rithm:A novel nature-inspired algorithm for engineering applications[J].Sensors,2022,22(3):855.
[16]DHIMAN G,GARG M,NAGAR A,et al.A novel algorithm for global optimization:rat swarm optimizer[J].Journal of Ambient Intelligence and Humanized Computing,2021(12):8457-8482.
[17]SHADRAVAN S,HAMID R N,VAHID K B.The Sailfish Optimizer:A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems[J].Engineering Applications of Artificial Intelligence,2019(80):20-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!