计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400145-8.doi: 10.11896/jsjkx.240400145
任庆欣, 冯锋
REN Qingxin, FENG Feng
摘要: 针对河马优化算法(Hippopotamus Optimization Algorithm,HO)收敛速度慢、易陷入局部寻优以及对算法参数有依赖性等问题,文中提出一种多策略多维度融合改进的河马优化算法(Improved Hippo Optimization Algorithm Based on Multi-strategy and Multi-dimension Fusion,MSMDHO)。首先,利用准反向学习的映射方式生成或者扰动初始化种群,提高种群的空间分布质量。其次,引入了正余弦优化策略,将其应用在HO算法第一阶段中的描述雌性或未成熟河马种群位置更新公式中,利用其震荡性不断检测和扰动,从而达到更好的优化效果。最后,在HO的抵御捕食者阶段和逃离捕食者阶段分别使用切线飞行策略和PID搜索因子,避免种群陷入局部寻优,提高全体收敛速度。利用MSMDHO算法、HO算法、多元宇宙算法(Multi-verse Optimization,MVO)、鹈鹕优化算法(Pelican Optimization Algorithm,POA)、鼠群优化器(Rat Swarm Optimizer,RSO)、旗鱼优化算法(Sailfish Optimizer,SFO)以及粒子群算法(Particle Swarm Optimization,PSO)对8个测试函数分别进行测试,结果表明,MSMDHO算法在全局搜索能力和收敛速度的稳定性和先进性都领先其他算法。
中图分类号:
[1]STORN R,KENNETH P.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997(11):341-359. [2]KARABOGA D,BAHRIYE B.A powerful and efficient algo-rithm for numerical function optimization:artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007(39):459-471. [3]XUE B,FU W L,ZHANG M J.Differential evolution(DE) for multi-objective feature selection in classification[C]//Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation.2014. [4]ABUALIGAH L,AL-QANESS M A A,ABD ELAZIZ M,et al.The non-monopolize search(NO):a novel single-based local search optimization algorithm[J].Neural Computing and Applications,2024,36(10):5305-5332. [5]AMIRI M H,HASHJIN N M,NAJAFABADI M K,et al.Hippopotamus optimization algorithm:a novel nature-inspired optimization algorithm[J].Scientific Reports,2024,14(1):5032. [6]EWEES AHMED A,MOHAMED A E,HOUSSEIN E H.Improved grasshopper optimization algorithm using opposition-based learning[J].Expert Systems with Applications,2018(112):156-172. [7]TIZHOOSH H R.Opposition-Based Learning:A New Scheme for Machine Intelligence[C]//International Conference on International Conference on Computational Intelligence for Modelling,Control & Automation.IEEE,2005:695-701. [8]XING Y F,et al.An Automatic Pipe-Routing Algorithm Based on Improved Sine Cosine Algorithm for Complex Space[J].Journal of Aerospace Engineering,2023,36(6):04023082. [9]AKAY R,MUSTAFA Y Y.Multi-strategy and self-adaptivedifferential sine-cosine algorithm for multi-robot path planning[J].Expert Systems with Applications,2023(232):120849. [10]RAJ S,SAURAV,SHIVA C K,et al.A novel chaotic chimp sine cosine algorithm Part-I:For solving optimization problem[J].Chaos,Solitons & Fractals,2023(173):113672. [11]YU,X W,WEI P,YONG L.WSN node localization algorithm of sparrow search based on elite opposition-based learning and Levy flight[J].Telecommunication Systems,2023,84(4):521-531. [12]LAYEB A.Tangent search algorithm for solving optimizationproblems[J].Neural Computing and Applications,2022,34(11):8853-8884. [13]GAO Y S.PID-based search algorithm:a novel metaheuristic algorithm based on PID algorithm[J].Expert Systems With Applications,2023(232):120886. [14]MIRJALILI I,SEYED M M,ABDOLREZA H.Multi-verse optimizer:a nature-inspired algorithm for global optimization[J].Neural Computing and Applications,2016(27):495-513. [15]TROJOVSKÝ P,MOHAMMAD D.Pelican optimization algo-rithm:A novel nature-inspired algorithm for engineering applications[J].Sensors,2022,22(3):855. [16]DHIMAN G,GARG M,NAGAR A,et al.A novel algorithm for global optimization:rat swarm optimizer[J].Journal of Ambient Intelligence and Humanized Computing,2021(12):8457-8482. [17]SHADRAVAN S,HAMID R N,VAHID K B.The Sailfish Optimizer:A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems[J].Engineering Applications of Artificial Intelligence,2019(80):20-34. |
|