计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700139-5.doi: 10.11896/jsjkx.240700139

• 大数据&数据科学 • 上一篇    下一篇

不协调知识的表示和推理系统实现

朱福喜1, 朱丽达2   

  1. 1 武汉学院人工智能应用研究中心 武汉 430212
    2 华中农业大学信息学院 武汉 430070
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 朱丽达(ldzhu@mail.hzau.edu.cn)
  • 作者简介:(ldzhu@mail.hzau.edu.cn)
  • 基金资助:
    湖北省教育厅哲学社会科学研究项目(20G102)

Representation and Reasoning System Realization of Inconsistent Knowledge

ZHU Fuxi1, ZHU Lida2   

  1. 1 AI Applied Research Center,Wuhan College,Wuhan 430212,China
    2 College of Informatics,Huazhong Agricultural University,Wuhan 430070,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:ZHU Fuxi,born in 1957,Ph.D,professor,Ph.D supervisor.His main research interests include artificial intelligence and so on.
    ZHU Lida,born in 1984,Ph.D,is a member of CCF(No.C0784M).Her main research interest includes artificial intellige.
  • Supported by:
    Hubei Provincial Department of Education Social Science Research Project(20G102).

摘要: 次协调逻辑作为一种非传统逻辑,能够合理地表示和处理不协调知识,但如何实现不协调知识的表示和推理,仍是一个亟待研究的课题。文中采用一种次协调逻辑系统——标记逻辑作为实现不协调知识的表示和推理的模型,以Python作为不协调知识的标记逻辑形式的表示工具,并在此基础上实现不协调知识下的推理。

关键词: 不协调知识, 次协调逻辑, 标记逻辑, Python语言, 推理系统

Abstract: As a type of non-traditional logic,paraconsistent logic is capable of representing and addressing inconsistent knowledge in a rational manner.However,the realization of representation and reasoning of inconsistent knowledge remains an urgent research topic.This paper utilizes a paraconsistent logic system-annotated logic-as a model for achieving the representation and reasoning of inconsistent knowledge.Specifically,Python is employed as the tool for representing the basis.

Key words: Inconsistent knowledge, Paraconsistent logic, Annotated logic, Python language, Reasoning system

中图分类号: 

  • G645
[1]DA COSTA N.Automated Theorem Proving in Paraconsistent Logic[J].Journal of Automated Reasoning,1992,9(1):170-210.
[2]DA COSTA N,RONDE D C.The Paraconsistent Logic ofQuantum Superpositions[J].Foundation of Physics,2013,43:845-858.
[3]DA COSTA N C A,RONDE D C.Non-Reflexive Logical Foundation for Quantum Mechanics[J],Foundation of Physics,2014,44:1369-1380.
[4]KIFER M, LOZINSKII E L.A Logic for Reasoning with In-consistency[J].Journal of Automated Reasoning,1992,9(2):179-215.
[5]KIFER M,SUBRAHMANIAN V S.Theory of Generalized Annotated Logic Programming and its Applications[J].Journal of Logic Programming,1992,12(4):335-368.
[6]ARIELI O,AVRON A.Logical Bilattices and inconsistent data[C]//Proceedings 9th IEEE Annual Symp.On Logic in Computer Science,Piscataway,N.J:IEEE Press,1994:468-476.
[7]ARENAS M,BERTOSSI L,CHOMICKI J.Consistent QueryAnswers in Inconsistent Databases[C]//Proceedings ACM Symposium on Principles of Database Systems.Philadelphia:ACM PODS’99,1999:68-79.
[8]ARENAS M,BERTOSSI L,KIFER M.Application of Annotated Predicate Calculus to Querying Inconsistent Databases[C]//6th International Conference on Rule and Objects in Databases(DOOD’2000).Berlin:Springer,2000:926-941.
[9]BIRNBAUM E,LOZINSKII E L.Consistent Subsets of Inconsistent Systems.[EB/OL].[2002-06-09].http://citeseer.nj.nec.com/birnbaum02consistent.html.
[10]MEHEUS J.Do We Need Paraconsistency in CommonsenseReasoning? Logic and Philosophy of Science[R].Belgium:Ghent University,2003.
[11]MARE DARC DENECKER A.Circumscriptive Approaches to Paraconsistent Reasoning.[EB/OL].[2001-03-06].http://www.cs.kuleuven.ac.be.
[12]BLAIR H.Paraconsistent Logic Programming [J].Theoretical Computer Science,1989(68):340-360.
[13]GINSBERG M L.Multivalued Logics:A Uniform Approach to Reasoning in Artificial Intelligence[J].Computational Intelligence,1988(4):265-316.
[14]GUI Q Q.What is Paraconsistent Logic[J].Logic and Lan-guage Learning,1988,4:20-23.
[15]GUI Q Q.Paraconsistent Formal Systems:The Logic of SeekingCoordination in Contradictions[J].Journal of Wuhan University,1989(6) :34-38.
[16]WANG WC,GUI QQ.Non-classical Logical Interpretations of Quantum Superposition State and Quantum Identity[J].Journal of Dialectics of Nature,September 2017,39(5):38-44.
[17]GUI Q Q.On Complementary Logic,Dialectical Logic and Paraconsistent Logic[J].Henan Social Sciences,March 2010,18(2):57-60.
[18]ZHANG Q Y.Paraconsistent Logic[M].Beijing:China Social Sciences Press,2003.
[19]JU S E,LIU H.A Three-valued Logic Based on the Presupposition of an Open World[C]//863 Program Intelligent Computer Theme Academic Conference.2001:507-514.
[20]ZHANG G Q.An Introduction to David Bohm’s Philosophy of Nature[M]//Jointly Published by the Management Committee of China Development Foundation in Taiwan and Hongye Culture Enterprise Co.,Ltd.,2002:85-116.
[21]GUI Q Q,CHEN Z L,ZHU F X.Paraconsistent Logic and Artificial Intelligence (Academic Series of Wuhan University) [M]//Wuhan:Wuhan University Press,2002:176-180.
[22]REN X M,GUI Q Q.A Phylogenesis Study of Non-Classical Logic Systems:Also on the Central Issue of the Philosophy of Logic[M]//Tianjin:Nankai University Press,2011:190-198.
[23]LIN Z Q,LI W.Inconsistent Logic [J].Computer Science,1994(5) :190-198.
[24]CHEN Z L,SHI Z Z.New Axiom RF of Paraconsistent Logic[C]//Proceedings of the Artificial Intelligence Academic Conference.1993:147-151.
[25]ZHU F X,GONG C S,YU Z K.Paraconsistent Reasoning Based on XML[J].Journal of Wuhan University,2006,52(1):1023-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!