计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800014-7.doi: 10.11896/jsjkx.240800014
曾凡运, 廉贺淳, 冯珊珊, 王庆梅
ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei
摘要: 材料SEM图像内容丰富,传统检索方法以及通用领域的检索方法在提取图像特征时容易受图像失真和纹理复杂等多种因素干扰,对关键特征的提取效果不佳。针对常规方法在提取材料SEM图像特征和高效检索方面存在的不足,提出一种基于多尺度特征信息的融合空洞卷积池化金字塔(ASPP)与增强混合注意力机制(ECBAM)的图像检索方法。该方法使用ConvNeXt网络进行特征提取,ConvNeXt结合膨胀卷积的大尺寸感受野和残差网络提取语义特征的优势,有助于捕捉到更多的细节和复杂纹理,能够更好地提取局部和全局特征;此外,通过引入最新的Mamba模块并将其改为双向架构以融入CBAM,提出了增强型混合注意力机制ECBAM,并将ASPP与ECBAM结合使用,从而稳定高效地对特征进行融合与增强。实验结果表明,在材料SEM图像数据集上,该方法获得了较好的检索效果,与主流检索方法相比平均检索精度提升了1.5%。
中图分类号:
[1]MA C,MU X,SHA D.Multi-layers feature fusion of convolutional neural network for scene classification of remote sensing[J].IEEE Access,2019,7:121685-121694. [2]LIU Z,MAO H,WU C Y,et al.A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:11976-11986. [3]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500. [4]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [5]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [6]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [7]HAN K,WANG Y,CHEN H,et al.A survey on vision transformer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(1):87-110. [8]YANG P,WANG F,WEI W.Research on ConvNeXt FeatureExtraction for Image Data [J].Computer Science,2024,51(S1):295-301. [9]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [10]WANG Q,HE L,WANG Z Q,et al.Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J].Computer Science,2024,51(8):168-175. [11]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [12]JIANG B,WAN Y,XIE X.Lightweight Steel Surface Defect Detection Model Based on Improved YOLOv5s [J].Computer Science,2023,50(S2):271-277. [13]ZHANG S,LIH,ZHANG Y,et al.Image Retrieval Algorithm Based on Independent Attention Mechanism [J].Computer Science,2023,50(S1):328-333. [14]ZHU L,LIAO B,ZHANG Q,et al.Vision mamba:Efficient visual representation learning with bidirectional state space model[J].arXiv:2401.09417,2024. [15]LI K,LI X,WANG Y,et al.Videomamba:State space model for efficient video understanding[J].arXiv:2403.06977,2024. [16]GUO T,WANG Y,MENG C,et al.Mambamorph:a mamba-based backbone with contrastive feature learning for deformable mr-ct registration[J].arXiv:2401.13934,2024. [17]TEICHMANN M,ARAUJO A,ZHU M,et al.Detect-to-re-trieve:Efficient regional aggregation for image search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5109-5118. [18]LINDENBERGER P,SARLIN P E,POLLEFEYS M.Light-glue:Local feature matching at light speed[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:17627-17638. [19]GLEIZE P,WANG W,FEISZLI M.Silk:Simple learned keypoints[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:22499-22508. [20]SUN J,SHEN Z,WANG Y,et al.LoFTR:Detector-free local feature matching with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8922-8931. [21]JIANG W,TRULLS E,HOSANG J,et al.Cotr:Correspondence transformer for matching across images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:6207-6217. [22]TIAN Y,BALNTAS V,NG T,et al.D2D:Keypoint extraction with describe to detect approach[C]//Proceedings of the Asian Conference on Computer Vision.2020. [23]HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1314-1324. [24]HUANG G,LIU Z,VANDERMAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [25]TAN M,LE Q.Efficientnet:Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2019:6105-6114. |
|