计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 134-143.doi: 10.11896/jsjkx.240800076
陈平1, 刘珂菡2, 梁正友1, 胡奇兴2, 张远鹏3,4
CHEN Ping1, LIU Kehan2, LIANG Zhengyou1, HU Qixing2, ZHANG Yuanpeng3,4
摘要: 主成分分析(Principal Component Analysis,PCA)广泛应用于许多领域,但其对非高斯噪声很敏感。研究者们已经提出了许多鲁棒主成分分析(Robust PCA,RPCA)模型来处理这个问题。然而,这些方法只能处理一种类型的噪声,如特征域中的脉冲噪声或样本域中的异常值。为此,提出了一种基于稀疏协同相关熵的RPCA模型(SCPCA),该模型对脉冲噪声和离群值同时具有鲁棒性。在此基础上,提出了一种基于Fenchel共轭和加速块坐标更新(Block Coordinate Update,BCU)策略的迭代算法。在聚类、背景重建和人脸建模方面进行了大量的实验来评估所提出的方法的鲁棒性。结果表明,在大多数情况下,所提出的方法优于目前先进的方法。
中图分类号:
[1]HOTELLING H.Analysis of a complex of statistical variables into principal components[J].Journal of Educational Psycho-logy,1933,24(6):417-441. [2]RODARMEL C,SHAN J.Principal compo-nent analysis for hyperspectral image classification[J].Surveying and Land Information Science,2002,62(2):115-122. [3]POON B,AMIN M A,YAN H.Pca based face recognition and testing criteria[C]//2009 International Conference on Machine Learning and Cybernetics.IEEE,2009:2945-2949. [4]MA J,YUAN Y.Dimension reduction of image deep featureusing pca[J].Journal of Visual Communication and Image Representation,2019,63:102578. [5]KWAK N.Principal component analysis based on l1-norm maximization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(9):1672-1680. [6]DING C,ZHOU D,HE X,et al.R1-PCA:rotational invariant l1-norm principal component analysis for robust sub space factorization[C]//Proceedings of the 23rd International Conference on Machine learning.2006:281-288. [7]HE R,HU B G,ZHENG W S,et al.Robust principal componentanalysis based on maximum correntropy criterion[J].IEEE Transactions on Image Processing,2011,20(6):1485-1494. [8]CANDES E J,LI X,MA Y,et al.Robust principal component analysis[J].Journal of the ACM,2011,58(3):1-37. [9]WRIGHT J,GANESH A,RAO S,et al.Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization[C]//Advances in Neural Information Processing Systems.2009. [10]PENG Y,GANESH A,WRIGHT J,et al.Rasl:Robust align-ment by sparse and low-rank decom-position for linearly correlated images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2233-2246. [11]ZHOU T,TAO D.Godec:Randomized low-rank & sparse matrix decomposition in noisy case[C]//Proceedings of the 28th International Conference on Machine Learning.2011. [12]GUO K,LIU L,XU X,et al.Godec+:Fast and robust low-rank matrix decom-position based on maximum correntropy[J].IEEE Transactions on Neural Networks and Learning Systems,2017,29(6):2323-2336. [13]ZHAO Q,MENG D,XU Z,et al.Robust principal componentanalysis with complex noise[C]//International Conference on Machine Learning.PMLR,2014:55-63. [14]LIU W,POKHAREL P P,PRINCIPE J C.Correntropy:Properties and applications in non-gaussian signal processing[J].IEEE Transactions on Signal Processing,2007,55(11):5286-5298. [15]CHEN B,PRINCIPE J C.Maximum corr-entropy estimation is a smoothed map estimation[J].IEEE Signal Processing Letters,2012,19(8):491-494. [16]DU L,LI X,SHEN Y D.Robust non negative matrix factorization via half-quadratic minimization[C]//2012 IEEE 12th International Conference on Data Mining.IEEE,2012:201-210. [17]PENG S,CHEN B,SUN L,et al.Constrained maximum cor-rentropy adaptive filtering[J].Signal Processing,2017,140:116-126. [18]ZHOU N,CHENG H,QIN J,et al.Robust high order manifold constrained sparse principal component analysis for image representation[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,29(7):1946-1961. [19]GEMAN D,REYNOIDS G.Constrained restoration and the recovery of discontinuities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(3):367-383. [20]XU Y,YIN W.A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[J].SIAM Journal on Imaging Sciences,2013,6(3):1758-1789. [21]SHI H J M,TU S,XU Y,et al.A primer on coordinate descent algorithms[J].arXiv:1610.00040,2016. [22]XU Y.Alternating proximal gradient method for sparse nonnegative tucker decomposition[J].Mathematical Programming Computation,2015,7:39-70. [23]WANG Y,JODOIN P M,PORIKLI F,et al.Cdnet 2014:An expanded change detection benchmark dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2014:387-394. [24]TOYAMA K,KRUMM J,BRUMITT B,et al.Wallflower:Principles and practice of background maintenance[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.IEEE,1999:255-261. [25]GEORGHIADES A S,BELHUMEUR P N, KRIEGMAN J D.From few to many:Illumination cone models for face recognition under variable lighting and pose[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660. [26]COLE R,FANTY M.ISOLET.UCI Machine Learning Repository[DB/OL].https://doi.org/-10.24432/C51G69. [27]SILVERMAN B W.Density estimation for statistics and dataanalysis[M].CRC Press,1986. [28]CHENG L,GONG M,SCHUURMANS D,et al.Real-time discriminative background subtraction[J].IEEE Transactions on Image Processing,2010,20(5):1401-1414. |
|