计算机科学 ›› 2016, Vol. 43 ›› Issue (5): 252-256.doi: 10.11896/j.issn.1002-137X.2016.05.047

• 人工智能 • 上一篇    下一篇

基于相关熵和距离方差的支持向量数据描述选择性集成

邢红杰,魏勇乐   

  1. 河北大学数学与信息科学学院河北省机器学习与计算智能重点实验室 保定071002,河北大学计算机科学与技术学院 保定071002
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61473111),河北省自然科学基金项目(F2013201060),河北大学基金项目(3504020)资助

Selective Ensemble of SVDDs Based on Correntropy and Distance Variance

XING Hong-jie and WEI Yong-le   

  • Online:2018-12-01 Published:2018-12-01

摘要: 提出基于信息理论学习中相关熵和距离方差的支持向量数据描述选择性集成。利用相关熵代替均方误差来度量集成的紧致性,构造出更为紧致的分类边界;利用距离方差集成度量集成中基分类器间的差异性,以提高集成模型的差异性;在目标函数中增加基于1范数的正则化项,实现选择性集成。此外,利用半二次优化技术对所提选择性集成模型进行求解。与单个支持向量数据描述、基于Bagging的支持向量数据描述集成以及基于AdaBoost的支持向量数据描述集成相比,所提方法取得了更优的分类性能。

关键词: 单类分类,支持向量数据描述,相关熵,选择性集成

Abstract: Selective ensemble of support vector data description(SVDD) based on correntropy of information theoretic learning and distance variance was proposed.Correntropy is utilized to substitute mean square error to measure the compactness of ensemble and construct more compact classification boundary.Distance variance is used to measure the diversity of base classifiers to enhance the diversity of the ensemble model.An 1 norm based regularization term is introduced into the objective function to implement the selective ensemble.Moreover,the half-quadratic optimization technique is utilized to solve the proposed selective ensemble model.In comparison with single SVDD,Bagging based ensemble of SVDDs,and AdaBoost based ensemble of SVDDs,the proposed method achieves better classification perfor-mance.

Key words: One-class classification,Support vector data description,Correntropy,Selective ensemble

[1] Tax D M J.One-class classification:concept learning in the absence of counter examples[D].Delft University of Technology,2001
[2] Schlkopf B,Williamson R C,Smola A J,et al.Support vectormethod for novelty detection[C]∥Conference:Advances in Neural Information Processing Systems.2000:582-588
[3] Tax D M J,Duin R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66
[4] Tax D M J,Duin R P W.Combining one-class classifiers[C]∥Proceedings of the 2nd International Workshop on Multiple Classifier Systems.2001:299-308
[5] Seguí S,Igual L,Vitrià J.Weighted bagging for graph based one-class classifiers[C]∥Proceedings of the 9th International Workshop on Multiple Classifier Systems.2010:1-10
[6] Zhang J,Lu J,Zhang G.Combining one class classification mo-dels for avian influenza outbreaks[C]∥Proceedings of the 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making.2011:190-196
[7] Wilk T,Wozniak M.Soft computing methods applied to combination of one-class classifiers[J].Neurocomputing,2012,75:185-193
[8] Casale P,Pujol O,Radeva P.Approximate polytope ensemble for one-class classification[J].Pattern Recognition,2014,47:854-864
[9] Krawczyk B,Wo′niak M,Cyganek B.Clustering-based ensembles for one-class classification[J].Information Sciences,2014,264:182-195
[10] Zhou Z H,Wu J X,Tang W.Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002,137(1/2):239-263
[11] Wang L,Li Q.Effective selective ensemble algorithms for support vector machines[J].Neurocomputing,2010:287-295
[12] Li N,Zhou Z.Selective ensemble under regularization frame-work[J].Lecture Notes in Computer Science,2009,5519:293-303
[13] Zhang L,Zhou W.Sparse ensembles using weighted combination methods based on linear programming[J].Pattern Recognition,2011,44(1):97-106
[14] Krawczyk B.One-class classifier ensemble pruning and weighting with firefly algorithm[J].Neurocomputing,2015,150(B):490-500
[15] Vapnik V N.Statistical Learning Theory[M].New York:Wiley,1998
[16] Principe J C.Information Theory Learning:Renyi’s Entropy and Kernel Perspectives[M].Springer,2012
[17] Tang E K,Suganthan P N,Yao X.An analysis of diversitymeasures[J].Machine Learning,2006,65(1):247-271
[18] Yin X C,Huang K,Yang C,et al.Convex ensemble learning with sparsity and diversity[J].Information Fusion,2014,20:49-59
[19] Vedelsby J,Krogh A.Neural network ensembles,cross-validation and active learning[J].Advances in Neural Information Processing Systems,1995,7:231-238
[20] He R,Hu B G,Zheng W S,et al.Robust principal componentanalysis based on maximum correntropy criterion[J].IEEE Transactions on Image Processing,2011,20(6):1485-1494
[21] Eockfellar R.Convex analysis[M].Princeton University Press,Princeton,1970
[22] Wu M,Ye J.A small sphere and large margin approach for no-velty detection using training data with outliers[J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2009,31(11):2088-2092
[23] Frank A,Asuncion A.UCI machine learning repository.University of California,Irvine,School of Information and Computer Science,Irvine,CA.http://archive.ics.uci.edu/ml

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!