计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800100-14.doi: 10.11896/jsjkx.240800100

• 大数据&数据科学 • 上一篇    下一篇

自扰动和极性维度交互的自适应差分进化算法

翟雪玉, 杨卫中   

  1. 中国农业大学信息与电气工程学院 北京 100083
    农业农村部农机作业监测与大数据应用重点实验室 北京 100083
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 杨卫中(yangweizhongcau@163.com)
  • 作者简介:(pjw2146087@126.com)
  • 基金资助:
    国家重点研发计划项目(2021YFB3901302)

Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme DimensionExchange

ZHAI Xueyu, YANG Weizhong   

  1. College of Information and Electrical Engineering,China Agriculture University,Beijing 100083,China
    Key Laboratory of Agricultural Machinery Monitoring and Big Data Application,Ministry of Agriculture and Rural Affairs,Beijing 100083,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:ZHAI Xueyu,born in 2002,bachelor.Her main research interests include computational intelligence and data mining.
    YANG Weizhong,born in 1963,Ph.D,associate professor.His main research interests include unmanned driving and computational intelligence.
  • Supported by:
    National Key Research and Development Program of China(2021YFB3901300).

摘要: 针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。

关键词: 差分进化算法, 参数自适应, 自引导扰动补偿, 极性维度交互, 多样性增强

Abstract: Aiming at the defects of differential evolution algorithm,such as loss of population diversity and premature convergence when dealing with multimodal complex optimization problems,a differential evolution based on adaptive parameter control and self-guided perturbation(APE-DE)is proposed.First,it designs a self-guided perturbation compensating scheme to guide its search direction by considering the individual’s spatial position,effectively avoiding the dilemma of falling into the local optimum.Second,the algorithm also develops an extreme dimension exchange strategy,which evaluates population diversity from multiple dimensions and implements related different diversity enhancement schemes.Finally,the algorithm proposes an adaptive parameter control strategy that combines information from wavelet basis functions and fitness distribution deviations to capture the dynamic changes in population fitness in real time and adjust the algorithm parameters accordingly.To verify the performance of APE-DE,experiments are conducted on the widely used IEEE CEC2017 data set to validate the effectiveness of the algorithm in multimodal and complex environments.Experimental results show that compared with eight advanced differential evolution variants,APE-DE exhibits significant advantages in both convergence accuracy and convergence speed.Furthermore,to evaluate the effectiveness of APE-DE in solving real-world problems,the proposed algorithm is applied to the parameter identification problem of photovoltaic models.

Key words: Differential evolution, Parameter adaptation, Self-guided disturbance compensation, Extreme dimension exchange, Diversity enhancement

中图分类号: 

  • TP301.6
[1]STORN R,PRICE K V.Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11(4):341-359.
[2]LIU R X,QIN W,XU H W.Improved Metaheuristics for Single Container Loading Problem with Complex Constraints [J].Computer Science,2023,50(S2):33-42.
[3]WANG F Y,GEX F,WANG X R,et al.A study on the dispatch of emergency supplies under uncertainty scenarios considering the perception of disaster victims [J].Journal of Safety and Environment,2024,24(5):1965-1976.
[4]HUANG F H,LI P D,PENG J.Multi-agent Based BiddingStrategy Model Considering Wind Power [J].Computer Science,2024,51(S1):1195-1202.
[5]LI R,HE X S,YANG X S.Application of Moth AlgorithmBased on Differential Evolution in Power Dispatch[J].Computer Engineering and Applications,2021,57(13):258-268.
[6]HUANG F,LI Y F,GAO Y.Scheduling Optimization Method for Household Electricity Consumption Based on Improved Genetic Algorithm [J].Computer Science,2024,51(S1):1169-1174.
[7]LIN J,YE J X,LIU W W,et al.Multimodal differential evolution algorithm for solving capacitated vehicle routing problem[J].Journal of Computer Applications,2023,43(7):2248-2254.
[8]WANG B,WU H L,NIU X Z.Robot Path Planning Based on Improved Potential Field Method[J].Computer Science,2022,49(7):196-203.
[9]YANG Z,DENG L B,DI Y Z,et al.Multimodal transportation route optimization based on fuzzy demand and fuzzy transportation time[J].Control Theory and Technology,2024,41(6):967-976.
[10]LI Y Q,LIU Z Q,CHENG N Y,et al.Path Planning of UAV Under Multi-constraint Conditions[J].Computer Engineering and Applications,2021,57(4):225-230.
[11]DAS S,KONAR A,CHAKRABORTY U K.Two improved differential evolution schemes for faster global search[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation.Washington DC USA:ACM,2005:991-998[2024-05-20].
[12]DRAA A,BOUZOUBIA S,BOUKHALFA I.A sinusoidal dif-ferential evolution algorithm for numerical optimisation[J].Applied Soft Computing,2015,27:99-126.
[13]REN C,SONG Z,MENG Z.Differential Evolution with fitnessdifference based parameter control and hypervolume diversity indicator for numerical optimization[J].Engineering Applications of Artificial Intelligence,2024,133:108081.
[14]FENG Y,ZHANG B R,XU H Y,et al.Community Detection Algorithms Combining Improved Differential Evolution and Modularity Density[J].Journal of Frontiers of Computer Science and Technology,2020,14(6):1070-1080.
[15]CHIANG C W,LEE W P,HEH J S.A 2-Opt based differential evolution for global optimization[J].Applied Soft Computing,2010,10(4):1200-1207.
[16]EPITROPAKIS M G,TASOULIS D K,PAVLIDIS N G,et al.Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators[J].IEEE Transactions on Evolutionary Computation,2011,15(1):99-119.
[17]ZHANG J Q,SANDERSON A C.JADE:Adaptive Differential Evolution With Optional External Archive[J].IEEE Transactions on Evolutionary Computation,2009,13(5):945-958.
[18]ZENG Z,ZHANG H.An evolutionary-state-based selectionstrategy for enhancing differential evolution algorithm[J].Information Sciences,2022,617:373-394.
[19]LI S Y,HE Q,CHEN J.Application of Improved Equilibrium Optimizer Algorithm to Constrained Optimization Problems[J].Journal of Frontiers of Computer Science and Technology,2023,17(5):1075-1088.
[20]TANABE R,FUKUNAGA A S.Improving the search performance of SHADE using linear population size reduction[C]//2014 IEEE Congress on Evolutionary Computation(CEC).IEEE,2014:1658-1665.
[21]TANABE R,FUKUNAGA A S.Improving the search performance of SHADE using linear population size reduction[C]//2014 IEEE Congress on Evolutionary Computation(CEC).IEEE,2014:1658-1665.
[22]BREST J,MAUCEC M S,BOSKOVIC B.Single objective real-parameter optimization:Algorithm JSO[C]//2017 IEEE Congress on Evolutionary Computation(CEC).IEEE,2017:1311-1318.
[23]AWAD N H,ALI M Z,SUGANTHAN P N.Ensemble sinu-soidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]//2017 IEEE Congress on Evolutionary Computation.IEEE,2017:372-379.
[24]MENG Z,PAN J S,KONG L.Parameters with Adaptive Lear-ning Mechanism(PALM) for theenhancement of Differential Evolution[J].Knowledge-Based Systems,2018,141:92-112.
[25]MENG Z,PAN J S,TSENG K K.PaDE:An enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical optimization[J].Knowledge-Based Systems,2019,168:80-99.
[26]MENG Z,YANG C.Hip-DE:Historical population based mutation strategy in differential evolution with parameter adaptive mechanism[J].Information Sciences,2021,562:44-77.
[27]MENG Z.Dimension improvements based adaptation of control parameters in Differential Evolution:A fitness-value-indepen-dent approach[J].Expert Systems with Applications,2023,223:119848.
[28]MENG Z,YANG C.Two-stage differential evolution with novel parameter control[J].Information Sciences,2022,596:321-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!