计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 87-93.doi: 10.11896/jsjkx.240900064

• 大语言模型技术研究及应用 • 上一篇    下一篇

一种基于知识图谱的检索增强生成情报问答技术

成志宇1, 陈星霖2, 王菁3, 周中元4, 张志政5,6   

  1. 1 东南大学苏州联合研究生院 江苏 苏州215000
    2 东南大学软件学院 南京 211189
    3 信息系统工程全国重点实验室 南京 210023
    4 中国电子科技集团公司第二十八研究所 南京 210023
    5 东南大学计算机科学与工程学院 南京 211189
    6 新一代人工智能技术与交叉应用教育部重点实验室(东南大学) 南京 211189
  • 收稿日期:2024-09-10 修回日期:2024-10-20 出版日期:2025-01-15 发布日期:2025-01-09
  • 通讯作者: 张志政(seu_zzz@seu.edu.cn)
  • 作者简介:((1103357821@qq.com)
  • 基金资助:
    军科委国防科技重点实验室基金(6142101210205);军科委国防科技创新特区资助项目

Retrieval-augmented Generative Intelligence Question Answering Technology Based on Knowledge Graph

CHENG Zhiyu1, CHEN Xinglin2, WANG Jing3, ZHOU Zhongyuan4, ZHANG Zhizheng5,6   

  1. 1 Joint Graduate School,Southeast University,Suzhou,Jiangsu 215000,China
    2 College of Software Engineering,Southeast University,Nanjing 211189,China
    3 Science and Technology on Information Systems Engineering Laboratory,Nanjing 210023,China
    4 The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210023,China
    5 School of Computer Science and Engineering,Southeast University,Nanjing 211189,China
    6 Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications(Southeast University),Ministry of Education,Nanjing 211189,China
  • Received:2024-09-10 Revised:2024-10-20 Online:2025-01-15 Published:2025-01-09
  • About author:CHENG Zhiyu,born in 1999,postgra-duate.His main research interests include knowledge graph and question answering systems.
    ZHANG Zhizheng,born in 1980,Ph.D,associate professor,is a member of CCF(No.32012M).His main research interests include knowledge representation and reasoning,and knowledge agents.
  • Supported by:
    Pre-research Key Laboratory Fund for Equipment(6142101210205) and National Defense Science and Technology Innovation Special Zone Funding Project.

摘要: 为实现军事情报问答,提出了一种基于知识图谱的检索增强生成框架。该框架通过问题分类、实体识别、实体链接、知识检索有效地获取了背景知识。同时考虑到情报问题多约束的特点,使用回答集编程在知识上通过约束限制减少知识数量或者直接获得答案。最后,使用大语言模型在精炼后的知识上对问题进行求解,以减少问题理解过程中的属性识别与链接。在MilRE数据集上的实验表明,所提框架能够提供基于知识图谱的增强知识检索功能,并具有较好的军事情报问题解答能力。

关键词: 情报问答, 回答集编程, 大语言模型, 检索增强生成, 知识图谱

Abstract: A knowledge graph-based retrieval-augmented generation framework is proposed to achieve military intelligence question answering.The framework effectively acquires background knowledge through question classification,entity recognition,entity linking,and knowledge retrieval.Considering the multi-constraint characteristics of intelligence questions,answer set programming is used to reduce the amount of knowledge through constraints or to directly obtain answers.Finally,a large language model solves the questions based on the refined knowledge,minimizing attribute recognition and linking issues during question understanding.Experiments on the MilRE dataset demonstrate that the framework provides enhanced knowledge retrieval capabilities based on knowledge graphs and offers superior performance in answering military intelligence questions.

Key words: Intelligence question-answering, Answer set programming, Large language models, Retrieval-augmented generation, Knowledge graph

中图分类号: 

  • TP391
[1]PAN S,LUO L,WANG Y,et al.Unifying large language mo-dels and knowledge graphs:A roadmap[J].arXiv.2306.08302,2023.
[2]PENG H.Design and Implementation of Military KnowledgeQ&A System Based on Knowledge Graph [D].Beijing:Beijing University of Posts and Telecommunications,2022:25-45.
[3]GUO A B.Research on Key Technologies and Systems of Intelligent Intelligence Q&A [D].Changsha:National University of Defense Technology,2021:8-11.
[4]XU P K.Research on Key Technologies for Semantic Analysis of Questions in Military Knowledge Q&A [D].Changsha:National University of Defense Technology,2021:34-46.
[5]FAN J J,MA H Q,LIU X L.Research on Military Knowledge Graph Q&A Intelligent Service for Open Source Intelligence in the Digital Intelligence Era [J/OL].Data Analysis and Know-ledge Discovery:1-15.[2024-06-30].http://kns.cnki.net/kcms/detail/10.1478.G2.20231026.1305.002.html.
[6]LAN Y,HE G,JIANG J,et al.Complex knowledge base question answering:A survey[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(11):11196-11215.
[7]HUANG L,YU W,MA W,et al.A survey on hallucination in large language models:Principles,taxonomy,challenges,and open questions[J].arXiv:2311.05232,2023.
[8]TONMOY S M,ZAMAN S M,JAIN V,et al.A comprehensive survey of hallucination mitigation techniques in large language models[J].(arXiv:2401.01313,2024.
[9]SCHLAG I,SUKHBAATAR S,CELIKYILMAZ A,et al.Large language model programs[J].arXiv:2305.05364,2023.
[10]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-augmentedgeneration for knowledge-intensive nlp tasks[J].Advances in Neural Information Processing Systems,2020,33:9459-9474.
[11]GAO Y,XIONG Y,GAO X,et al.Retrieval-augmented generation for large language models:A survey[J].arXiv:2312.10997,2023.
[12]NAKANO R,HILTON J,BALAJI S,et al.Webgpt:Browser-assisted question-answering with human feedback[J].arXiv:2112.09332,2021.
[13]ASAI A,WU Z,WANG Y,et al.Self-rag:Learning to retrieve,generate,and critique through self-reflection[J].arXiv:2310.11511,2023.
[14]RACKAUCKAS Z.Rag-fusion:a new take on retrieval-augmented generation[J].arXiv:2402.03367,2024.
[15]PAWAR S,TONMOY S M,ZAMAN S M,et al.The What,Why,and How of Context Length Extension Techniques in Large Language Models--A Detailed Survey[J].arXiv:2401.07872,2024.
[16]WANG X,SALMANI M,OMIDI P,et al.Beyond the limits:A survey of techniques to extend the context length in large language models[J].arXiv:2402.02244,2024.
[17]GEBSER M,KAMINSKI R,KAUFMANN B,et al.Answer set solving in practice[M].Morgan and Claypool Publishers,2022.
[18]LIU W,ZHOU P,ZHAO Z,et al.K-bert:Enabling languagerepresentation with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:2901-2908.
[19]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018.
[20]TEAM G L M,ZENG A,XU B,et al.ChatGLM:A Family of Large Language Models from GLM-130B to GLM-4 All Tools[J].arXiv:2406.12793,2024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!