计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 240900072-7.doi: 10.11896/jsjkx.240900072

• 计算机图形学&多媒体 • 上一篇    下一篇

基于三维CT切片的下肢骨分割算法的优化研究

宋磊1, 王宝会1, 杜辉2   

  1. 1 北京航空航天大学软件学院 北京 100191
    2 北京积水潭医院 北京 100035
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 王宝会(wangbh@buaa.edu.cn)
  • 作者简介:455716751@qq.com
  • 基金资助:
    北京市自然科学基金-海淀原始创新联合基金项目(L222059

Optimization Study of Segmentation Algorithms for Lower Limb Bone on 3D CT Slices

SONG Lei1, WANG Baohui1, DU Hui2   

  1. 1 School of Software,Beihang University,Beijing 100191,China
    2 Beijing Jishuitan Hospital,Beijing 100035,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund Project(L222059).

摘要: 在机器人辅助下肢截骨术中,置针和截骨等操作的位置规划依赖于高精度的骨骼模型,而准确分离CT影像中的骨骼组织是实现建模的关键。对此,提出了一种改进的U-Net卷积神经网络模型,创新性地引入了动态滑动窗口机制,即在处理连续切片数据时,通过动态调整窗口大小,以增强对不同截面变化的适应性,从而提升分割的准确度。基于北京积水潭医院下肢骨CT影像数据集进行验证,得到改进后模型的Dice系数为84.948%,而U-Net为80.353%,Attention U-Net为83.580%,结果表明,改进后模型的分割效果有显著提升。

关键词: U-Net, 医学影像处理, 特征融合, 动态滑动窗口

Abstract: Robot-assisted lower limb osteotomy requires precise bone models for accurate pin placement and osteotomy planning.Accurate segmentation of bone tissue in CT images is essential for creating these models.This paper proposes an enhanced U-Net convolutional neural network model,which incorporates a dynamic sliding window mechanism.This mechanism adjusts the window size dynamically during the processing of sequential CT slices,improving the model’s adaptability to different cross-sectional variations and enhancing segmentation accuracy.Validation with a CT image dataset of lower limb bones from Beijing Jishuitan Hospital shows that the improved model achieves a Dice coefficient of 84.948%.This represents a significant improvement over the U-Net model(80.353%) and the Attention U-Net model(83.580%).These results highlight the effectiveness of the proposed method in achieving more accurate bone tissue segmentation.

Key words: U-Net, Medical image processing, Feature fusion, Dynamic sliding window

中图分类号: 

  • TP183
[1]LIU J H,TONG J,NI J J,et al.Improved U-Net-based segmentation of lower limb skeletal CT images [J].Computer Systems &Applications,2022,31(10):134-141.
[2]ZHU H D,CHEN Y,ZHANG L.Research on Grayscale Normalization Methods for Medical Images [J].International Journal of Biomedical Engineering,2006(3):148-151.
[3]OTSU N.A Threshold Selection Method from Gray-Level Histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[4]ADAMS R,BISCHOF L.Seeded region growing[J].IEEETransactions on Pattern Analysis and Machine Intelligence,1994,16(6):641-647.
[5]CANNY J.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
[6]MARR D,HILDRETH E.Theory of edge detection[C]//Proceedings of the Royal Society of London.1980:187-217.
[7]WEN Y.Research on Semantic Segmentation Technology of Medical Images Based on Deep Learning [D].Chengdu:University of Electronic Science and Technology of China,2024.
[8]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Compu-ting and Computer-Assisted Intervention.Springer,2015.
[9]MILLETARI F,NAVAB N,AHMADI S A.V-Net:Fully Con-volutional Neural Networks for Volumetric Medical Image Segmentation[J].arXiv:1606.04797,2016.
[10]NIYAS S,PAWAN S J,ANAND KUMAR M,et al.Medicalimage segmentation with 3D convolutional neural networks:A survey[J].Neurocomputing,2022,493:397-413.
[11]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).Springer,2018:833-851.
[12]WANG H.Research on Medical Image Segmentation MethodsBased on Deep Learning [D].Guilin:Guilin University of Electronic Technology,2022.
[13]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.UNet++:Redesigning Skip Connections to Exploit Multiscale Fea-tures in Image Segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI).Springer,2018:3-11.
[14]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-Net:Learning Where to Look for the Pancreas[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI).2018:605-613.
[15]ALOM Z,TAHA T M,ASARI V K.Recurrent Residual Con-volutional Neural Network based on U-Net(R2U-Net) for Me-dical Image Segmentation[J].Neurocomputing,2018,275:406-417.
[16]HE C E,XU H J,WANG Z,et al.Research on Automatic Seg-mentation Algorithm of Multimodal Magnetic Resonance Brain Tumor Images [J].Acta Optica Sinica,2020,40(6):66-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!