计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 64-73.doi: 10.11896/jsjkx.241000093
李啸澜, 马勇
LI Xiaolan, MA Yong
摘要: 针对视觉安防系统在边缘计算平台部署火焰检测模型时面临的精度与实时性难以平衡的问题,提出一种渐进自适应特征融合的轻量化火焰检测算法。首先,设计轻量级稀疏卷积算子降低模型计算复杂度与内存访问开销。其次,针对分组卷积的通道间信息交互缺陷,基于残差思想构建长距离上下文特征增强的轻量级特征提取组件。为解决深度骨干网络中特征丢失及背景干扰问题,创新性地提出基于高频增强的轻量级特征强化机制,优化空间域和通道域参数,缓解背景干扰问题。在此基础上,建立特征增强-渐进自适应特征融合框架,促进不同尺度特征图充分融合,提高特征图利用率,增强对多尺度目标的识别效果。实验结果表明,所提方法在实时推理速度最高达到27.1 FPS的同时,参数量降低至2.1×106,较基准模型减少69.5%,并达到83.4%的mAP@0.5检测精度,显著优于现有主流方法。
中图分类号:
[1]CHEN J,HE Y,WANG J.Multi-feature fusion based fast videoflame detection[J].Building and Environment,2010,45(5):1113-1122. [2]DEVE K B,HANCKE G P,SILVA B J.Design of a smart fire detection system[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society.IEEE,2016:6205-6210. [3]WU Q Y,YAN Y Y,DU J,et al.Flame Detection AlgorithmBased on Multi-feature Fusion[J].Journal of Intelligent Systems,2015,10(2):240-247. [4]CORTES C,VAPNIK V.Support-vector networks[J].Machine learning,1995,20:273-297. [5]JIA Y,W H Q,HU Y,et al.Image-based Flame Recognition Based on Improved Hierarchical Clustering and SVM[J].Computer Engineering and Applications,2014 (5):165-168. [6]EMMY PREMA C,VINSLEY S S,SURESH S.Efficient flame detection based on static and dynamic texture analysis in forest fire detection[J].Fire technology,2018,54:255-288. [7]YAN Y Y,CHEN C X,LIU Y A,et al.Flame Detection of Dynamic Texture Features in Dimension-Weighted Mode[J].Chinese Journal of Intelligent Systems,2017,12(4):548-555. [8]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [9]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:In-verted residuals and linear bottlenecks[C]//2018 IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE,2018:4510-4520. [10]HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//2019 IEEE/CVF International Conference on Computer Vision.IEEE,2019:1314-1324. [11]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremelyefficient convolutional neural network for mobile devices[C]//2018 IEEE Conference on Computer Vision and Pattern.IEEE,2018:6848-6856. [12]CHEN J,KAO S,HE H,et al.Run,Don't Walk:Chasing Higher FLOPS for Faster Neural Networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2023:12021-12031. [13]HAN K,WANG Y,TIAN Q,et al.Ghostnet:More featuresfrom cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:1580-1589. [14]TAN M,CHEN B,PANG R,et al.Mnasnet:Platform-awareneural architecture search for mobile[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019:2820-2828. [15]CHEN Y,KALANTIDIS Y,LI J,et al.A^2-nets:Double attention networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:350-359. [16]ZHAO H,JIA J,KOLTUN V.Exploring self-attention for image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10076-10085. [17]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:7132-7141. [18]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542. [19]YANG L,ZHANG R Y,LI L,et al.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//2021 International Conference on Machine Learning.PMLR,2021:11863-11874. [20]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//2018 European Conference on Computer Vision.Springer,2018:3-19. [21]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:2117-2125. [22]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:8759-8768. [23]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:10781-10790. [24]GHIASI G,LIN T Y,LE Q V.Nas-fpn:Learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7036-7045. [25]LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019. [26]HARIHARAN B,MALIK J,RAMANAN D.Discriminativedecorrelation for clustering and classification[C]//European Conference on Computer Vision.Berlin:Springer,2012:459-472. [27]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [29]LI C,LI L,JIANG H,et al.YOLOv6:A single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [30]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design[C]//2018 European Conference on Computer Vision.Munich:Springer,2018:116-131. [31]DAQUAN Z,HOU Q,CHEN Y,et al.Rethinking Bottleneck Structure for Efficient Mobile Network Design[J].arXiv:2007.02269,2020. [32]HE Y,SAHMA A,HE X,et al.FireNet:A Lightweight and Ef-ficient Multi-Scenario Fire Object Detector[J].Remote Sensing,2024,16(21):4112. [33]SHEN P,SUN N,HU K,et al.FireViT:An Adaptive Lightweight Backbone Network for Fire Detection[J].Forests,2023,14(11):2158. [34]LIANG Y,CHEN T,ZHANG W.Multi-Scale Fire DetectionAlgorithm with Adaptive Attention[J].Transactions of Beijing institute of Technology,2024,44(1):91-101. |
|