计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 271-277.doi: 10.11896/jsjkx.241100069
陈壮壮1, 邓怡辰3, 余敦辉1,2, 肖奎1,2
CHEN Zhuangzhuang1, DENG Yichen3, YU Dunhui1,2, XIAO Kui1,2
摘要: 跨语言知识图谱实体对齐是连接不同语言知识图谱的关键步骤,在多语言信息检索、数据融合等任务中有重要作用。然而,现有的实体对齐方法依赖知识图谱中的多种信息,难以很好地处理稀疏知识图谱实体对齐任务,并且对新的语言的适应性较差。针对该问题,提出了基于元学习的跨语言实体对齐框架。该框架总体分为外循环与内循环两个阶段:在外循环阶段,通过基于任务相似度的采样方法选取出多个任务,然后对模型进行多任务联合训练,构建教师模型;在内循环阶段,利用外循环阶段训练好的教师模型指导学生模型进行训练和实体对齐任务,提升学生模型实体对齐的性能和泛化性。在SRPRS和WK31-60K数据集上的实验结果表明,所提框架在实体对齐问题中,Hits@1指标平均提升3.5%,Hits@10指标平均提升4.0%,MRR指标平均提升6.3%。
中图分类号:
| [1]ZHANG F,YANG L Y,LI J W,et al.A Review of EntityAlignment Research[J].Journal of Computer Science,2022,45(6):1195-1225. [2]CAO Y X,WANG X,HE X G,et al.Unifying knowledge graph learning and recommendation:Towards a better understanding of user prefere-nces[C]//Proceedings of the World Wide Web Conference.2019:151-161. [3]YU L,MADJID N A,DIFALLAH D.CrunchQA:A SyntheticDataset for Question Answering over Crunchbase Knowledge Graph[C]//2022 IEEE International Conference on Big Data.IEEE,2022:4635-4641. [4]CHEN X,ZHANG Z,WU Q.A Survey of Meta-Learning Techniques for Knowledge Graphs[J].ACM Computing Surveys,2023,55(4):1-35. [5]CHEN X,WU Q,LIU H.Meta-Learning for Knowledge Graph Completion:A Review[J].Knowledge-Based Systems,2023,22(3):182-193. [6]WANG T,YANG Z,XU R.A Comprehensive Survey onKnowledge Graph Embedding Techniques[J].ACM Computing Surveys,2023,55(1):1-34. [7]CHEN M,TIAN Y,YANG M,et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2016:213-225. [8]SUN Z,HU W,LI C.Cross-lingual entity alignment via joint attribute-preserving embedding[C]//The Semantic Web-ISWC 2017:16th International Semantic Web Conference.Springer,2017:1999-2008. [9]TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning.PMLR,2016:2071-2080. [10]ANG Z,LIU F,ZHANG Z.Cross-lingual knowledge graphalignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:349-357. [11]MAO X,LI X,LIU Y,et al.Relational reasoning for knowledge graph entity alignment[C]//Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data.2021:1121-1133. [12]ZHANG J,ZHANG W,CHEN X,et al.Multi-modal entityalignment in knowledge graphs[C]//Proceedings of the 2020 Web Conference.2020:2164-2174. [13]WU Y,WANG X,JIANG P,et al.Knowledge-enhanced graphconvolutional networks for entity alignment[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management.2020:1745-1754. [14]FINN C,ABBEEL P,LEVINE S.Model-Agnostic Meta-Lear-ning for Fast Adaptation of Deep Networks[C]//Proceedings of the 34th International Conference on Machine Learning(ICML).2017:70-77. [15]SNELL J, SWERSKY K,ZEMEL R S.Prototypical Networks for Few-Shot Learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:30-39. [16]YANG H W,ZOU Y,SHI P,et al.Aligning cross-lingual entities with multi-aspect information[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Proces-sing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:2231-2244. [17]SANG H,CHEN W,WANG J,et al.RDGCN:Reasonably dense graph convolution network for pedestrian trajectory prediction[J].Measurement,2023,213:112675. [18]ZHU Z,FAN X,CHU X,et al.HGCN:A heterogeneous graph convolutional network-based deep learning model toward collective classification[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2020:1161-1171. [19]ZHANG X,ZHANG R,CHEN J,et al.Semi-supervised entity alignment with global alignment and local information aggregation[J].IEEE Transactions on Knowledge and Data Enginee-ring,2023,35(10):10464-10477. [20]NG Y,WU J,YU K,et al.Independent Relation Representation With Line Graph for Cross-Lingual Entity Alignment[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(11):11503-11514. [21]WANG Z,YANG J,YE X.Knowledge graph alignment with entity pair embedding[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).Association for Computational Linguistics,2020:1672-1680. [22]SUN Z,HU W,WANG C,et al.Revisiting embedding-based entity alignment:a robust and adaptive method[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(8):8461-8475. [23]WU Y,LIU X,FENG Y,et al.Neighborhood matching network for entity alignment[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:6477-6487. |
|
||