计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 245-254.doi: 10.11896/jsjkx.241100106
王鑫玮, 冯锋
WANG Xinwei, FENG Feng
摘要: 电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅食优化算法(IEEFO)。首先,调整能量因子策略,引入了双曲正切能量因子,使算法在迭代过程中提前加入开发行为,从而快速发现最优种群,加快收敛速度;之后,改进扰动因子,扩大电鳗游走的位置范围,有利于种群的全局寻优;然后,在迁徙阶段加入正弦余弦策略,促进算法的局部开发;最后,在每次迭代之后,加入透镜成像反向学习的策略来扩大搜索空间,使得算法跳出局部最优并加速收敛到全局最优解。将IEEFO分别与6种基本算法、4种单策略改进的电鳗觅食优化算法进行对比,对13个基准函数进行仿真实验,对IEEFO算法进行性能评估。实验结果表明,IEEFO相比于对比算法收敛速度更快,全局寻优能力更强,算法总体性能有显著提升。此外,通过一个机械优化设计实验进行测试分析,进一步验证了IEEFO的有效性和适用性。
中图分类号:
| [1]LIU J,HOU Y,LI Y,et al.Advanced strategies on updatemechanism of tree-seed algorithm for function optimization and engineering design problems[J].Expert Systems with Applications,2024,236:121312. [2]BRAIK M S.Chameleon Swarm Algorithm:A bio-inspired optimizer for solving engineering design problems[J].Expert Systems with Applications,2021,174:114685. [3]WEI F,ZHANG Y,LI J.Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems[J].Expert Systems with Applications,2024,248:123444. [4]WANG D,TAN D,LIU L.Particle swarm optimization algo-rithm:an overview[J].Soft Computing,2018,22(2):387-408. [5]NADIMI-SHAHRAKI M H,TAGHIAN S,MIRJALILI S.An improved grey wolf optimizer for solving engineering problems[J].Expert Systems with Applications,2021,166:113917. [6]ZHENG B,CHEN Y,WANG C,et al.The Moss Growth Opti-mization(MGO):concepts andperformance[J].Journal of Computational Design and Engineering,2024,11(5):184-221. [7]ABDEL-BASSET M,MOHAMED R,ABOUH-AWWASH M.Crested Porcupine Optimizer:A new nature-inspired metaheuristic[J].Knowledge-Based Systems,2024,284:111257. [8]ABDEL-BASSET M,MOHAMED R,SALL-AM K M,et al.Light Spectrum Optimizer:A Novel Physics-Inspired Metaheuristic Optimization Algorithm[J].Mathematics,2022,10(19):3466. [9]TROJOVSKÁ E,DEHGHANI M,TROJOVSKY' P.Zebra Optimization Algorithm:A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm[J].IEEE Access,2022,10:49445-49473. [10]ZOLFI K.Gold rush optimizer:A new population-based metaheuristic algorithm[J].Operations Research and Decisions,2023:33(1):113-150. [11]ZHAO W G,WANG L Y,ZHANG Z X,et al.Electric eel foraging optimization:A new bio-inspired optimizer for engineering applications[J].Expert Systems with Applications,2024,238:122200. [12]HOU Y,GAO H,WANG Z,et al.Improved grey wolf optimiza-tion algorithm and application[J].Sensors,2022,22(10):3810. [13]RIZK-ALLAH R M.Hybridizing sine cosine algorithm withmulti-orthogonal search strategy for engineering design problems[J].Journal of Computational Design and Engineering,2018,5(2):249-273. [14]LI Z,FENG F.An Artificial Hummingbird Algorithm Based on Multi-strategy Improvement [J].Computer Science,2024,51(S1):100-108. [15]AKAY R,YILDIRIM M Y.Multi-strategy and self-adaptive differential sine-cosine algorithm for multi-robot path planning[J].Expert Systems with Applications,2023,232:120849. [16]HE Y,WANG M.An improved chaos sparrow search algorithm for UAV path planning[J].Scientific Reports,2024,14(1):366. [17]YIN P,TAN G G,SONG W,et al.Comparative Study on Improved Tuna Swarm Optimization Algorithm Based on Chaotic Mapping [J].Computer Science,2024,51(S1):273-282. [18]ZHAO W G,WANG L Y,MIRJALILI S.Artificial hummingbird algorithm:A new bio-inspired optimizer with its engineering applications[J].Computer Methods in Applied Mechanics and Engineering,2022,388:114194. [19]XUE J K,SHEN B.Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J].Journal of Supercompu-ting,2023,79(7):7305-7336. [20]JAIN M,SINGH V,RANI A.A novel nature-inspired algorithm for optimization:Squirrel search algorithm[J].Swarm and Evolutionary Computation,2019,44:148-175. |
|
||