计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 245-254.doi: 10.11896/jsjkx.241100106

• 人工智能 • 上一篇    下一篇

基于多策略改进的电鳗觅食优化算法

王鑫玮, 冯锋   

  1. 宁夏大学信息工程学院 银川 750021
  • 收稿日期:2024-11-18 修回日期:2025-02-12 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 冯锋(feng_f@nxu.edu.cn)
  • 作者简介:(15709589970@163.com)
  • 基金资助:
    宁夏自然科学基金重点项目(2024AAC02011)

Multi-strategy Improved Electric Eel Foraging Optimization Algorithm

WANG Xinwei, FENG Feng   

  1. College of Information Engineering,Ningxia University,Yinchuan 750021,China
  • Received:2024-11-18 Revised:2025-02-12 Online:2025-11-15 Published:2025-11-06
  • About author:WANG Xinwei,born in 2000,postgra-duate,is a member of CCF(No.U1374G).His main research interest is intelligent optimization algorithm improvements and applications.
    FENG Feng,born in 1971,professor,Ph.D supervisor.His main research interests include information system engineering and application and so on.
  • Supported by:
    Key Project of Ningxia Natural Science Foundation(2024AAC02011).

摘要: 电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅食优化算法(IEEFO)。首先,调整能量因子策略,引入了双曲正切能量因子,使算法在迭代过程中提前加入开发行为,从而快速发现最优种群,加快收敛速度;之后,改进扰动因子,扩大电鳗游走的位置范围,有利于种群的全局寻优;然后,在迁徙阶段加入正弦余弦策略,促进算法的局部开发;最后,在每次迭代之后,加入透镜成像反向学习的策略来扩大搜索空间,使得算法跳出局部最优并加速收敛到全局最优解。将IEEFO分别与6种基本算法、4种单策略改进的电鳗觅食优化算法进行对比,对13个基准函数进行仿真实验,对IEEFO算法进行性能评估。实验结果表明,IEEFO相比于对比算法收敛速度更快,全局寻优能力更强,算法总体性能有显著提升。此外,通过一个机械优化设计实验进行测试分析,进一步验证了IEEFO的有效性和适用性。

关键词: 电鳗觅食优化算法, 透镜成像反向学习, 能量因子, 扰动因子, 正弦余弦算法, 群智能优化算法

Abstract: In response to the issues of EEFO algorithm,such as insufficient global exploration ability,susceptibility to local optima,slow convergence,and performance sensitivity to parameter settings that require careful adjustment and optimization,a multi-strategy improved Electric Eel Foraging Optimization algorithm(IEEFO)is proposed.Firstly,the energy factor strategy is adjusted by introducing a hyperbolic tangent energy factor,which allows the algorithm to incorporate exploratory behavior earlier in the iteration process,enabling rapid discovery of the optimal population and accelerating convergence speed.Secondly,thedistur-bance factor is improved to increase the range of positions where the electric eel can move,which is beneficial for global optimization of the population.Then,a sine cosine strategy is added during the migration phase,which is conducive to local exploration of the algorithm.Finally,after each iteration,a lens imaging reverse learning strategy is incorporated to expand the search space,which helps the algorithm escape from local optima and accelerate convergence to the global optimal solution.The IEEFO is compared with 6 basic algorithms and 4 single-strategy improved Electric Eel Foraging Optimization algorithms,and 13 benchmark functions are used for simulation experiments to evaluate the performance of the IEEFO algorithm.The experimental results show that the IEEFO has faster convergence speed and stronger global optimization ability compared to the aforementioned algorithms,with a significant improvement in overall algorithm performance.Additionally,a mechanical optimization design experiment is conducted to further test and analyze the effectiveness and applicability of the IEEFO.

Key words: Electric eel optimization algorithm, Lens imaging ieverse learning, Energy factor, Perturbation factor, Sine cosine algorithm, Swarm intelligence optimization algorithm

中图分类号: 

  • TP301.6
[1]LIU J,HOU Y,LI Y,et al.Advanced strategies on updatemechanism of tree-seed algorithm for function optimization and engineering design problems[J].Expert Systems with Applications,2024,236:121312.
[2]BRAIK M S.Chameleon Swarm Algorithm:A bio-inspired optimizer for solving engineering design problems[J].Expert Systems with Applications,2021,174:114685.
[3]WEI F,ZHANG Y,LI J.Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems[J].Expert Systems with Applications,2024,248:123444.
[4]WANG D,TAN D,LIU L.Particle swarm optimization algo-rithm:an overview[J].Soft Computing,2018,22(2):387-408.
[5]NADIMI-SHAHRAKI M H,TAGHIAN S,MIRJALILI S.An improved grey wolf optimizer for solving engineering problems[J].Expert Systems with Applications,2021,166:113917.
[6]ZHENG B,CHEN Y,WANG C,et al.The Moss Growth Opti-mization(MGO):concepts andperformance[J].Journal of Computational Design and Engineering,2024,11(5):184-221.
[7]ABDEL-BASSET M,MOHAMED R,ABOUH-AWWASH M.Crested Porcupine Optimizer:A new nature-inspired metaheuristic[J].Knowledge-Based Systems,2024,284:111257.
[8]ABDEL-BASSET M,MOHAMED R,SALL-AM K M,et al.Light Spectrum Optimizer:A Novel Physics-Inspired Metaheuristic Optimization Algorithm[J].Mathematics,2022,10(19):3466.
[9]TROJOVSKÁ E,DEHGHANI M,TROJOVSKY' P.Zebra Optimization Algorithm:A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm[J].IEEE Access,2022,10:49445-49473.
[10]ZOLFI K.Gold rush optimizer:A new population-based metaheuristic algorithm[J].Operations Research and Decisions,2023:33(1):113-150.
[11]ZHAO W G,WANG L Y,ZHANG Z X,et al.Electric eel foraging optimization:A new bio-inspired optimizer for engineering applications[J].Expert Systems with Applications,2024,238:122200.
[12]HOU Y,GAO H,WANG Z,et al.Improved grey wolf optimiza-tion algorithm and application[J].Sensors,2022,22(10):3810.
[13]RIZK-ALLAH R M.Hybridizing sine cosine algorithm withmulti-orthogonal search strategy for engineering design problems[J].Journal of Computational Design and Engineering,2018,5(2):249-273.
[14]LI Z,FENG F.An Artificial Hummingbird Algorithm Based on Multi-strategy Improvement [J].Computer Science,2024,51(S1):100-108.
[15]AKAY R,YILDIRIM M Y.Multi-strategy and self-adaptive differential sine-cosine algorithm for multi-robot path planning[J].Expert Systems with Applications,2023,232:120849.
[16]HE Y,WANG M.An improved chaos sparrow search algorithm for UAV path planning[J].Scientific Reports,2024,14(1):366.
[17]YIN P,TAN G G,SONG W,et al.Comparative Study on Improved Tuna Swarm Optimization Algorithm Based on Chaotic Mapping [J].Computer Science,2024,51(S1):273-282.
[18]ZHAO W G,WANG L Y,MIRJALILI S.Artificial hummingbird algorithm:A new bio-inspired optimizer with its engineering applications[J].Computer Methods in Applied Mechanics and Engineering,2022,388:114194.
[19]XUE J K,SHEN B.Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J].Journal of Supercompu-ting,2023,79(7):7305-7336.
[20]JAIN M,SINGH V,RANI A.A novel nature-inspired algorithm for optimization:Squirrel search algorithm[J].Swarm and Evolutionary Computation,2019,44:148-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!