计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100152-7.doi: 10.11896/jsjkx.241100152

• 计算机图形学&多媒体 • 上一篇    下一篇

基于下肢骨X光三维重建算法的优化研究

王宝会1, 杜辉2, 张远1   

  1. 1北京航空航天大学软件学院 北京 100191
    2 首都医科大学附属北京积水谭医院 北京 100032
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 张远(alicyuan@buaa.edu.cn)
  • 作者简介:wangbh@buaa.edu.cn
  • 基金资助:
    北京市自然科学基金-海淀原始创新联合基金项目(L222059)

Optimization of 3D Reconstruction Algorithm Based on X-ray of Lower Limb Bone

WANG Baohui1, DU Hui2, ZHANG Yuan1   

  1. 1 School of Software,Beihang University,Beijing 100191,China
    2 Beijing Jishuitan Hospital,Capital Medical University,Beijing 100032,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund Project(L222059).

摘要: 在临床实践中,下肢骨畸形是骨科医疗中常见且治疗难度较大的病症,医生通常依赖正侧位X光片进行负重位畸形程度判断,但这一过程高度依赖医生的专业程度与经验水平。虽然CT三维摄片技术存在,但患者在拍摄CT时需要平躺,与站立负重位的差异导致其无法很好地满足诊断要求。因此,创建更为直观和准确的下肢骨畸形模型展示至关重要。这样不仅可以简化医生的工作,还能提高诊断的准确性,帮助他们制定更有效的治疗方案。因此,提出了基于PSSobel-X2CTGAN的模型,在原模型的基础上对reshape模块加入了Transformer机制,另外在数据集的准备中使用了CycleGAN来进行数据增强。在原论文的数据集上进行验证,实验结果清晰地表明,该模型在CT-PELVIC和SKI10数据集上的结构相似值分别达到了79.51%和56.32%,而原模型的值仅为77.49%和49.53%,展示了其显著的改进和提升。

关键词: 负重位, 三维重建, Transformer, CycleGAN, 下肢畸形矫正

Abstract: In clinical practice,bone malformations of the lower limb are common and difficult to treat in orthopedic medicine.Doctors usually rely on anteroposterior and lateral X-rays to judge the degree of malformations in the weight-bearing position,but this process is highly dependent on the professional level and experience level of doctors.Although three-dimensional CT imaging technology exists,it cannot meet the diagnostic requirements well due to the difference between patients who need to lie flat and standing weight-bearing position during CT imaging.Therefore,it is essential to create a more intuitive and accurate display of the lower limb bone malformation model.This will not only simplify the work of doctors,but also improve the accuracy of diagnoses and help them develop more effective treatment plans.This paper proposes a model based on PSSobel-X2CTGAN model,and on the basis of this model,Transformer mechanism is added to the reshape module.In addition,CycleGAN is used for data enhancement in the preparation of data sets.After validation of the data sets in the original paper,the experimental results clearly show that the structural similarity values of the model reaches 79.51% and 56.32% on the CT-PELVIC and SKI10 data sets,respectively,while the values of the original model are only 77.49% and 49.53%,indicating a significant improvement.

Key words: Load position, Three-dimensional reconstruction, Transformer, CycleGAN, Correction of lower limb deformity

中图分类号: 

  • TP391
[1]YE R W,WANG B H.Research on Lower Limb X-ray 3D Reconstruction Algorithm Based on Generative Adversarial Network[J].Computer Science,2024,51(S2):232-238.
[2]SHEPP L A,VARDI Y.Maximum Likelihood Reconstructionfor Emission Tomography[J].IEEE Transactions on Medical Imaging,1983,1:113-122.
[3]LUSTIG M,DONOHO D L,PAULY J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
[4]HERMAN G T.Fundamentals of Computerized Tomography:Image Reconstruction from Projections[C]//Advances in Pattern Recognition.2009.
[5]LAMECKER H,WENCKEBACH T H,HEGE H.Atlas-based 3D-Shape Reconstruction from X-Ray Images[C]//18th International Conference on Pattern Recognition(ICPR’06).2006:371-374.
[6]SERRADELL E,ROMERO A,LETA R,et al.Simultaneouscorrespondence and non-rigid 3D reconstruction of the coronary tree from single X-ray images[C]//2011 International Confe-rence on Computer Vision.2011:850- 857.
[7]EIGEN D,PUHRSCH C,FERGUS R.Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[C]//NIPS.2014.
[8]HENZLER P,RASCHE V,ROPINSKI T,et al.Single-imageTomography:3D Volumes from 2D X-Rays[J].arXiv:1710.04867,2017.
[9]YING X,GUO H,MA K,et al.X2CT-GAN:Reconstructing CT From Biplanar X-Rays With Generative Adversarial Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:10611-10620.
[10]WÜRFL T,GHESU F C,CHRISTLEIN V,et al.Deep Learning Computed Tomography[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2016.
[11]MAGNOR M A,KINDLMANN G L,DURIC N,et al.Con-strained inverse volume rendering for planetary nebulae[J].IEEE Visualization,2004,2004:83-90.
[12]SHI W,CABALLERO J,HUSZÁR F,et al.Real-Time SingleImage and Video Super- Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:1874-1883.
[13]MAO X,LI Q,XIE H,et al.Least Squares Generative Adversarial Networks[C]//2017 IEEE International Conference on Computer Vision(ICCV).2016:2813-2821.
[14]YU B,ZHOU L,WANG L,et al.Ea-GANs:Edge-Aware Ge-nerative Adversarial Networks for Cross-Modality MR Image Synthesis[J]IEEE Transactions on Medical Imaging,2019,38:1750-1762.
[15]BAHNER M L,DEBUS J,ZABEL A,et al.Digitally reconstructed radiographs from abdominal CT scans as a new tool for radiotherapy planning[J].Investigative Radiology,1999,34(10):643-647.
[16]LIU P,HAN H,DU Y,et al.Deep learning to segment pelvic bones:large-scale CT datasets and baseline models[J].International Journal of Computer Assisted Radiology and Surgery,2020,16:749-756.
[17]HEIMANN T,MORRISON B,STYNER M A,et al.Segmentation of Knee Images:A Grand Challenge[C]//MICCAI Workshop on Medical Image Analysis for the Clinic.2010:207-214.
[18]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//European Conference on Computer Vision.Springer,2020:213-222.
[19]CHEN H,GU J,ZHANG Z.Attention in attention network for image super-resolution[J].arXiv:2104.09497,2021.
[20]ZHU J,PARK T,ISOLA P,et al.Unpaired Image-to-ImageTranslation Using Cycle-Consistent Adversarial Networks[C]//IEEE International Conference on Computer Vision(ICCV).2017:2242-2251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!