计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600155-6.doi: 10.11896/jsjkx.240600155

• 大数据&数据科学 • 上一篇    下一篇

基于Transformer-Isolation Forest的地壳形变异常提取

王雪鉴1, 王毅恒1,2, 孙新坡2, 柳川3, 加明4, 赵超1, 杨超1   

  1. 1 桥梁无损检测与工程计算四川省高校重点实验室 四川 自贡 643000
    2 四川轻化工大学土木工程学院 四川 自贡 643000
    3 四川轻化工大学计算机科学与工程学院 四川 宜宾 644000
    4 西昌学院 四川 西昌 615000
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 王毅恒(wangyiheng0128@163.com)
  • 作者简介:(wangxuejian@outlook.com)
  • 基金资助:
    国家自然科学基金面上项目(41472325);桥梁无损检测与工程计算四川省高校重点实验室基金(2022QYY02,2023QYJ02)

Extraction of Crustal Deformation Anomalies Based on Transformer-Isolation Forest

WANG Xuejian1, WANG Yiheng1,2, SUN Xinpo2, LIU Chuan3, JIA Ming4, ZHAO Chao1, YANG Chao1   

  1. 1 Key Laboratoryof Bridges Non-destructive Testing and Engineering Calculation in Sichuan Province,Zigong,Sichuan 643000,China
    2 School of Civil Engineering,Sichuan University of Science & Engineering,Zigong,Sichuan 643000,China
    3 School of Computer Science & Engineering,Sichuan University of Science & Engineering,Yibin,Sichuan 644000,China
    4 Xichang University,Xichang,Sichuan 615000,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:WANG Xuejian,born in 2001,master.His main research interest is machine learning.
    WANG Yiheng,born in 1986.His main research interest is machine learning.
  • Supported by:
    National Natural Science Foundation of China(41472325) and Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing(2022QYY02,2023QYJ02).

摘要: GPS地壳变形监测在地震前兆研究中起着至关重要的作用。随着观测数据的积累,传统数据处理方法在大数据处理方面面临挑战。文中提出了一种基于Transformer网络和重构误差训练策略的算法。该算法通过训练Transformer网络学习无地震时的GPS地壳位移数据,输出正常数据,并将异常时的地震GPS地壳位移数据重构误差输入到Isolation Forest异常检测算法模型中来判别是否是地震异常前兆。从GPS地壳变形数据中提取了2个Mw>5的地震事件前异常,获得了比以往研究更全面且普遍的异常数据现象。统计分析显示,相同地区的观测站在2次地震前的GPS地壳变形数据中存在相似的异常现象,表明相同地区存在相似的地壳形变积累和释放模式。这些发现,强调了通过理解地震机制来提高地震预测和防范的必要性。

关键词: 地壳形变, 异常提取, Transformer, 全球定位系统, Isolation Forest

Abstract: GPS crustal deformation monitoring plays a vital role in the study of earthquake precursors.With the accumulation of observation data,traditional data processing methods face challenges in big data processing.This study proposes an algorithm based on Transformer network and reconstruction error training strategy.This algorithm learns the GPS crustal displacement data when there are no earthquakes by training the Transformer network,outputs normal data,and inputs the reconstruction error of the earthquake GPS crustal displacement data during abnormal times into the Isolation Forest anomaly detection algorithm model to determine whether it is a precursor to earthquake anomalies.We extract two pre-seismic event anomalies with Mw>5 from GPS crustal deformation data,and obtain more comprehensive and common anomaly data phenomena than previous studies.Statistical analysis shows that there are similar anomalies in the GPS crustal deformation data of these observation stations before multiple earthquakes,indicating the existence of similar crustal deformation accumulation and release patterns.These findings underscore the necessity to improve earthquake prediction and prevention by understanding earthquake mechanisms.

Key words: Crustal deformation, Anomaly extraction, Transformer, Global positioning system, Isolation Forest

中图分类号: 

  • P315
[1]DEVACHANDRA M,KUNDU B,CATHERINE J,et al.Positioning System(GPS) Measurements of Crustal Deformation across the Frontal Eastern Himalayan Syntaxis and Seismic-Hazard Assessment[J].Bulletin of the Seismological Society of America,2014,104(3):1518-1524.
[2]MARTINELLI G.Previous,Current,and Future Trends in Research into Earthquake Precursors in Geofluids[J].Geosciences,2020,10(5):189.
[3]MURRAY-MORALEDA J.GPS:Applications in Crustal De-formation Monitoring[C]//Encyclopedia of Complexity and Systems Science.Springer,New York,NY.,2009.
[4]SEYIN H,DUMAN,DOGANU,et al.Assessment of geodeticvelocities using GPS campaign measurements over long baseline lengths[J].Natural Hazards and Earth System Sciences,2019,19(3):571-582.
[5]LIN T J,LIN J T,CHANG W L,et al.Quick determination of earthquake source parameters from GPS measurements:a study of suitability for Taiwan[J].Geophysical Journal International,2019,219(2):1148-1162.
[6]SHU C Z,MENG Z G,WU Q,et al.Coseismic and Early Postseismic Deformation Mechanism Following the 2021 Mw 7.4 Maduo Earthquake:Insights from Satellite Radar Interferometry and GPS[J].Remote Sensing,2024,16(3):123-135.
[7]HIMEMATSU Y J,OZAWA T,AOKI Y.Precursory cratercontraction associated with the 2017 eruption of Shinmoe-dake volcano(Japan) detected by PALSAR-2 and Sentinel-1 InSAR[J].Earth,Planets and Space,2024,76(1).
[8]XIAO G,ZHANG K,ZHANG L.Characteristics of RegionalGPS Crustal Deformation before the 2021 Yunnan Yangbi Ms 6.4 Earthquake and Its Implications for Determining Potential Areas of Future Strong Earthquakes[J].Remote Sensing,2023,15(12),3195.
[9]LIU J,CHAO J,ZHAO Z,et al.Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China:Clues from InSAR and RST[J].Remote Sensing,2023,15(5),1271.
[10]CHI C,LI C,HAN Y.et al.Pre-earthquake anomaly extraction from borehole strain data based on machine learning[J].Sci Rep,2023,13(1):20095.
[11]CHEN S P,YIN L,LIANG S M,et al.Application of deeplearning to predict GPS time series in exploring the precursors of earthquake in M_S6.4 of the source source[J].Journal of Geodesy and Geodynamics,2020,40(12):1248-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!