计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200041-8.doi: 10.11896/jsjkx.241200041
卢世宇1, 王海瑞1, 朱贵富2,3, 李亚龙1
LU Shiyu1, WANG Hairui1, ZHU Guifu2,3, LI Yalong1
摘要: 为解决锂离子电池容量估计中特征提取不准确、数据噪声大及容量衰减趋势跟踪精度低等问题,提出了一种基于频率通道注意力机制(Frequency Channel Attention Mechanism,FCA)和MSCNet(Multi-Scale Inter-Series Correlations Net)的新型模型。模型首先对原始传感器数据进行去噪处理,以降低噪声对模型性能的干扰;其次,引入频率通道注意力机制,通过频域分析将输入序列映射到频域,识别主导时间尺度以捕捉显著的周期性模式,并对时间序列进行多尺度分解;最后,利用MSCNet对多尺度输出进行动态聚合,捕获不同时间尺度内的跨序列相关性,提升模型对时间依赖性的理解,同时减少模型参数量。在CALCE和NASA公开数据集上的实验表明,该模型在电池使用寿命预测中的相对误差(RE)较现有算法降低了10%~20%,能够更精准地跟踪电池衰退趋势。
中图分类号:
| [1]HUANG K,DING H,GUO Y F,et al.Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J].Transactions of China Electrotechnical Society,2022,37(15):3753-3766. [2]LI F,MIN Y,ZHANG Y,et al.State-of-health estimation me-thod for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression[J].Reliability Engineering & System Safety,2024,242(2):1-13. [3]WU Z Q,CHEN H J.Joint estimation of SOC and SOH of lithium battery based on adaptive H2/H∞ filtering[J].Journal of Metrology,2023,44(11):1719-1727. [4]LI Z H,SHI Q L,WANG K L,et al.Research status and prospect of state of health estimation method for lithium-ion battery[J/OL].http://kns.cnki.net/kcms/detail/32.1180.TP.20240715.1700.006.html. [5]NIU Z Y,JIANG X,XIE B,et al.Study on simulation and safety protection of electric vehicle overcharge and explosion accident[J].Transactions of China Electrotechnical Society,2022,37(1):36-47,57. [6]SHU X,SHEN J W,LI G,et al.A Flexible State-of-Health Prediction Scheme for Lithium-Ion BatteryPackth Long Short-Term Memory Network and Transfer Learning[J].IEEE Transactions on Transportation Electation,2021,7(4):2238-2248. [7]SU S S,LI W,MOU J H,et al.A Hybrid Battery Equivalent Circuit Model,Deep Learning,and Transfer Learfor Battery State Monitoring[J].IEEE Transactions on Transportation Electrification,2023,9(1):1113-1127. [8]WU Z Q,HU X Y,MA B Y,et al.Lithium Battery SOC Estimation Based on RFF and GWO-PF [J].Journal of Quantitative & Technical Economics,2022,43(9):1200-1207. [9]SHAHID F,ZAMEER A,MUNEEBM.A Novel Genetic LSTM Model for Wind Power Forecast[J].Energy,2021,10(1):1016-1020. [10]DING G,WANG W,ZHU T.Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU[J].IEEE Access,2022,10:89402-89413. [11]XIAO S,LIU P,CHEN K,et al.Battery state of health prediction based on voltage intervals,BP neural netwnd genetic algorithm[J].International Journal of Green Energy,2024,21(8):1743-1756. [12]JIA C,TIAN Y,SHI Y,et al.State of health prediction of lithium-ion batteries based on bidirectionalgatedurrent unit and transformer[J].Energy,2023,285:129401-129409. [13]ZHANG M D,LIU Y,CHEN J,et al.Lithium-ion BatteryHealth State Estimation Based on ISSA-GPR [J/OL].http://kns.cnki.net/kcms/detail/12.1420.TM.20231219.1345.010.html. [14]SONG W,WU D,SHEN W,et al.A remaining useful life prediction method for lithiumion battery based on temporal transformer network[J].Procedia Computer Science,2023,217:1830-1838. [15]ZHOU T,MA Z,WEN Q,et al.Fedformer:Frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning.PMLR,2022:27268-27286. [16]ZHOU T,MA Z,WEN Q,et al.Film:Frequency improved legendre memory model for long-term time series forecasting[J].Advances in Neural Information Processing systems,2022,35:12677-12690. [17]SHIZGAL B D,JUNGJ H.Towards the resolution of the Gibbs phenomena[J].Journal of Computational and Applied Mathematics,2003,161(1):41-65. [18]SHAZEER N,MIRHOSEINI A,MAZIARZ K,et al.Outra-geously large neural networks:The sparsely-gated mixture-of-experts layer[J].arXiv:1701.06538,2017. [19]SHEN J,MA W,SHU X,et al.Accurate state of health estimation for lithium-ion batteries under random charging scenarios[J].Energy,2023,279:128092. [20]XIA X Y,YUE J H,ZENG X Y,et al.A Remaining Capacity Estimation Method for Lithiumion Batteries Based on State-Dependent RBF-ARX Model [J/OL].http://kns.cnki.net/kcms/detail/11.2107.TM.20240613.1329.012.html. [21]LI C,ZHANG H L,ZHANG J P.Health Status Estimation of Spent Lithium-ion Batteries Based on Kernel Functions and Hyperparameter Optimization[J].Energy Storage Science and Technology,2024,13(6):2010-2021. [22]WANG P,PENG X Y,CHENG Z,et al.A multi-time-scale state joint estimation method for lithiumion batteries based on data-driven model fusion [J].Automotive Engineering,2022,44(3):362-371,378. [23]CHEN D,HONG W,ZHOU X.Transformer network for remaining useful life prediction of lithium-ion batteries[J].IEEE Access,2022,10:19621-19628. [24]ZHOU H,LI J,ZHANG S,et al.Expanding the prediction capacity in long sequence time-series forecasting[J].Artificial Intelligence,2023,318:103886-10392. [25]WU H,XU J,WANG J,et al.Autoformer:Decomposition transformers with auto-correlation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34:22419-22430. [26]WU H,HU T,LIU Y,et al.Timesnet:Temporal 2d-variationmodeling for general time series analysis[J].arXiv:2210.02186,2023. [27]YANG J S,FANG W GCHEN J Y,et al.A lithium-ion battery remaining useful life prediction method based on unscented particle filter and optimal combination strategy[J].Journal of Energy Storage,2022,55:105648. [28]ZHANG Y,CHEN L,LI Y,et al.A hybrid approach for remaining useful life prediction of lithiumion battery with adaptive levy flight optimized particle filter and long shortterm memory network[J].Journal of Energy Storage,2021,44:103245. |
|
||