计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200119-9.doi: 10.11896/jsjkx.241200119
姜文慧, 叶剑虹, 高灵婷, 黄一凡
JIANG Wenhui, YE Jianhong, GAO Lingting, HUANG Yifan
摘要: 在机器学习领域,模型的内在偏见问题日益受到关注,这些偏见往往源自训练数据的不平衡性或算法设计缺陷,从而导致某些群体在预测结果上受到不公正对待。为了解决这一问题,提出了一种公平性增强的决策树算法,通过引入公平性预处理方法,有效减少数据中的不平衡性,并且改变传统的决策树分裂标准,在决策树的分裂标准中综合考虑了分类准确性和公平性。所提方法旨在实现不同群体间预测结果的公平分配,减少模型决策中的偏见,确保所有个体得到公正对待。实验结果表明,所提出的方法在多种公平性度量标准下展现出良好的性能,显著降低了不同群体间的预测偏差,具有比现有传统算法更强的公平性纠偏性能。
中图分类号:
| [1]PESSACH D,SHMUELI E.A review on fairness in machinelearning[J].ACM Computing Surveys,2022,55(3):1-44. [2]KANAKIS M E,KHALILI R,WANG L.Machine learning for computer systems and networking:A survey[J].ACM Computing Surveys,2022,55(4):1-36. [3]CATON S,HAAS C.Fairness in machine learning:A survey[J].ACM Computing Surveys,2024,56(7):1-38. [4]CALDERS T,VERWER S.Three naive bayes approac-hes fordiscrimination-free classification[J].Data Mining and Know-ledge Discovery,2010,21:277-292. [5]KAMIRAN F,CALDERS T.Data preprocessing techn-iques for classification without discrimination[J].Knowledge and Information Systems,2012,33(1):1-33. [6]CALDERS T,KAMIRAN F,PECHENIZKIY M.Building classifiers with independency constraints[C]//2009 IEEE International Conference on Data Mining Workshops.IEEE,2009:13-18. [7]ZHANG W,TANG X,WANG J.On fairness-aware learning for non-discriminative decision-making [C]//2019 International Conference on Data Mining Workshops(ICDMW).IEEE,2019:1072-1079. [8]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357. [9]FRIEDLER S A,SCHEIDEGGER C,VENKATASUBRAMA-NI-AN S,et al.A comparative study of fairness-enhancing interventions in machine learning[C]//Proceedings of the Confe-rence on Fairness,Accounttability,and Transparency.2019:329-338. [10]TAE K H,ROH Y,OH Y H,et al.Data cleaning for accurate,fair,and robust models:A big data-AI integration approach[C]//Proceedings of the 3rd International Workshop on Data Management for End-to-end Machine Learning.2019:1-4. [11]GONZÁLEZ-ZELAYA V,SALAS J,MEGÍAS D,et al.Fair and private data preprocessing through microa-ggregation[J].ACM Transactions on Knowledge Discovery from Data,2023,18(3):1-24. [12]ZAFAR M B,VALERA I,ROGRIGUEZM G,et al.Fairness constraints:Mechanisms for fair classification[C]//Artificial Intelligence and Statistics.PMLR,2017:962-970. [13]LE QUY T,ROY A,IOSIFIDIS V,et al.A survey on datasets for fairness-aware machine learning[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2022,12(3):e1452. [14]HARDT M,PRICE E,SREBRO N.Equality of opportunity in supervised learning[J].Advances in Neural Information Proces-sing Systems,2016,29:3323-3331. [15]BERK R,HEIDARI H,JABBARI S,et al.Fairness in criminal justice risk assessments:The state of the art[J].Sociological Methods & Research,2021,50(1):3-44. [16]ZAFAR M B,VALERA I,GOMEZ RODRIGUEZ M,et al.Fairness beyond disparate treatment & disparate impact:Lear-ning classification without disparate mistreatment[C]//Procee-dings of the 26th International Conference on World Wide Web.2017:1171-1180. [17]LI Y,SUN H,WANGW H.Towards fair truth discovery from biased crowdsourced answers[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2020:599-607. [18]KAMIRAN F,CALDERS T,PECHENIZKIY M.Discrimi-nation aware decision tree learning[C]//2010 IEEE International Conference on Data Mining.IEEE,2010:869-874. [19]SPINELLI I,SCARDAPANE S,HUSSAIN A,et al.Fairdrop:Biased edge dropout for enhancing fairness in graph representation learning[J].IEEE Transactions on Artificial Intelligence,2021,3(3):344-354. [20]TANGIRALA S.Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm[J].International Journal of Advanced Computer Science and Applications,2020,11(2):612-619. |
|
||