计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 54-61.doi: 10.11896/jsjkx.241200170

• 智能医学工程 • 上一篇    下一篇

DACSNet:基于双注意力机制与分类监督的乳腺超声图像病变检测

李方, 王洁   

  1. 北京工业大学计算机学院 北京 100124
  • 收稿日期:2024-12-23 修回日期:2025-03-14 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 王洁(wj@bjut.edu.cn)
  • 作者简介:(leefwasx0921@163.com)
  • 基金资助:
    国家自然科学基金(62476015)

DACSNet:Dual Attention Mechanism and Classification Supervision Network for Breast Lesion Detection in Ultrasound Images

LI Fang, WANG Jie   

  1. School of Computer Science,Beijing University of Technology,Beijing 100124,China
  • Received:2024-12-23 Revised:2025-03-14 Online:2025-09-15 Published:2025-09-11
  • About author:LI Fang,born in 1999,postgraduate.Her main research interests include medical image lesion detection and deep learning.
    WANG Jie,born in 1972,Ph.D,asso-ciate professor.Her main research in-terests include logic programming,agent-oriented programming languages,and deep learning.
  • Supported by:
    National Natural Science Foundation of China(62476015).

摘要: 超声成像是乳腺病变最常用的检测技术,基于深度学习的乳腺超声图像自动化病变检测引起了越来越多的研究人员关注。然而,大部分研究未能充分融合图像信息来增强特征,也未考虑到注意力模块的引入带来的模型复杂度增大和假阳率升高的问题。因此,对现有的RetinaNet模型进行改进,以VMamba为骨干网络,提出了基于双注意力机制与分类监督的病变检测网络(DACSNet)以提高乳腺超声图像中病变检测的准确性,并降低检测假阳率。具体来说,将医学领域的知识引入注意力模块,通过双注意力模块(DAM)来增强通道维度和空间维度的特征。DAM仅涉及少量参数,且能有效提高模型的检测性能。此外,为了降低病变检测的假阳率,在模型中加入了分类监督模块(CSM)来融合病变分类信息,实现对疑似病变区域的二次关注。为了验证DACSNet的性能,在3组公开的乳腺超声图像数据集上进行了乳腺病变检测实验,结果证明了该方法的有效性。

关键词: 乳腺超声图像, 病变检测, VMamba, 双注意力模块, 分类监督

Abstract: Ultrasound imaging is the most commonly used technology for breast lesion detection and automated lesion detection of breast ultrasound images has attracted increasing attention from researchers.However,most studies fail to fully integrate image information to enhance features,and they do not take into account the problems of the increased model complexity and neglect the issue of rising false positive rates.Therefore,this paper improves existing RetinaNet model by using VMamba as the backbone network and proposes a lesion detection network based on dual attention mechanism and classification supervision(DACSNet) to improve the accuracy of lesion detection in breast ultrasound images and reduce the false-positive rate.Specifically,this paper incorporates medical domain knowledge into the attention module,where the dual attention module(DAM) effectively enhances feature representation in both the channel and spatial dimensions.The DAM involves only a small number of parameters and effectively boosts the model’s detection performance.Furthermore,to reduce the false-positive rate of lesion detection,a classification supervision module(CSM) is added the model to integrate lesion classification information,achieving secondary focus on suspected lesion areas.To verify the performance of DACSNet,experiments for breast lesion detection are conducted on three sets of publicly available breast ultrasound image datasets,and the experimental results demonstrate the effectiveness of this method.

Key words: Breast ultrasound image, Lesion detection, VMamba, Dual attention module, Classification supervision

中图分类号: 

  • TP391
[1]BRAY F,LAVERSANNE M,SUNG H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:a Cancer Journal for Clinicians,2024,74(3):229-263.
[2]QIAN X,PEI J,ZHANG H,et al.Prospective assessment ofbreast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning[J].Nature Biomedical Engineering,2021,5:522-532.
[3]DRUKKER K,GIGER M L,HORSCH K,et al.Computerized lesion detection on breast ultrasound[J].Medical Physics,2002,29(7):1438-1446.
[4]MADABHUSHI A,METAXAS D N.Combining low-,high-le-vel and empirical domain knowledge for automated segmentation of ultrasonic breast lesions[J].IEEE Transactions on Medical Imaging,2003,22(2):155-169.
[5] LI Y J,GU H,WANG H Y,et al.BUS-net:A Deep Learning Model of Breast Tumor Lesion Detection for Ultrasound Images[J].Frontiers in Oncology,2022,12:12848271.
[6]AL-DHABYANI W,GOMAA M,KHALED H,et al.Dataset of breast ultrasound images[J].Data in Brief,2020,28:104863.
[7]LAGHMATI S,HICHAM K,CHERRADI B,et al.Segmenta-tion of Breast Cancer on Ultraound Images using Attention U-Net Model[J].International Journal of Advanced Computer Science and Applications(IJACSA),2023,14(8):770-778.
[8]XIE X,NIU J,LIU X,et al.A Survey on Incorporating Domain Knowledge into Deep Learning for Medical Image Analysis[J].Medical Image Analysis,2021(8):101985.
[9]MENG H,LI X F,NIU J W,et al.DGANet:A Dual Global Attention Neural Network for Breast Lesion Detection in Ultrasound Images[J].Ultrasound in Medicine & Biology,2022,49(1):31-44.
[10]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision(ICCV).2017:2999-3007.
[11]LIU Y,TIAN Y,ZHAO Y Z,et al.Vmamba:Visual state space model[J].arXiv:2401.10166,2024.
[12]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional BlockAttention Module[C]//Computer Vision-ECCV 2018.Cham:Springer,2018.
[13]WANG Q L,WU B G,ZHU P F,et al.ECANet:Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2020:11531-11539.
[14]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2024-2036.
[15]LIN Z,LIN J H,ZHU L,et al.A New Dataset and a Baseline Model for Breast Lesion Detection in Ultrasound Videos[C]//Medical Computing and Computing Assisted Intervention.Cham:Springer,2022:614-623.
[16]ARDAKANI A A,MOHAMMADI A,MIRZA-AGHAZADEH-ATTARI M,et al.An open-access breast lesion ultrasound image database:Applicable in artificial intelligence studies[J].Computers in Biology and Medicine,2022,152:106438.
[17]ZHANG S F,CHI C,YAO Y Q,et al.Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Se-lection[J].arXiv.1912.02424,2019.
[18]SUN X,WANG X Y,LIU J,et al.Classic YOLO Series Target Detection Algorithms and Their Application in Breast Cancer Detection[J].Computer Systems and Applications,2023,32(12):52-62.
[19]REN S,HE K,GIRSHICK R,et al.Faster RCNN:TowardsReal-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[20]LYU C Q,ZHANG W W,HUANG H A,et al.RTM-Det:An Empirical Study of Designing Real-Time Object Detectors[J].arXiv:2212.07784,2022.
[21]ZHU X,SU W,LU L,et al.Deformable DETR:DeformableTransformers for End-to-End Object Detection[C]//International Conference on Learning Representations.2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!