计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 96-105.doi: 10.11896/jsjkx.250300033

• 智能医学工程 • 上一篇    下一篇

基于动态病情建模的药物组合推荐模型

胡海龙, 许祥伟, 李雅倩   

  1. 湖州师范学院信息工程学院 浙江 湖州 313000
    浙江省工业固废热解处置技术及智能化装备重点实验室 浙江 湖州 313000
    浙江师范大学浙江省智能教育技术与应用重点实验室 浙江 金华 321004
    湖州市水域机器人技术重点实验室湖州师范学院 浙江 湖州 313000
  • 收稿日期:2025-03-06 修回日期:2025-05-15 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 李雅倩(cornelia_lyq@163.com)
  • 作者简介:(03139@zjhu.edu.cn)
  • 基金资助:
    湖州市科技资助计划项目(2022YZ15);湖州师范学院研究生优秀课程项目(YJGX24003);湖州师范学院研究生科研创新项目(2025KYCX57)

Drug Combination Recommendation Model Based on Dynamic Disease Modeling

HU Hailong, XU Xiangwei, LI Yaqian   

  1. School of Information Engineering,Huzhou University,Huzhou,Zhejiang 313000,China
    Zhejiang Key Laboratory of Industrial Solid Waste Thermal Hydrolysis Technology and Intelligent Equipment,Huzhou University,Huzhou,Zhejiang 313000,China
    Zhejiang Key Laboratory of Intelligent Education Technology and Application,Zhejiang Normal University,Jinhua,Zhejiang 321004,China
    Huzhou Key Laboratory of Waters Robotics Technology,Huzhou University,Huzhou,Zhejiang 313000,China
  • Received:2025-03-06 Revised:2025-05-15 Online:2025-09-15 Published:2025-09-11
  • About author:HU Hailong,born in 1980,Ph.D,asso-ciate professor.His main research in-terests include biomedicine information intelligent processing,AI & its applications.
    LI Yaqian,born in 1999,postgraduate.Her main research interests include biomedicine information intelligent processing and traditional Chinese medicine recommendation.
  • Supported by:
    Science and Technology Plan Project of Huzhou,China(2022YZ15),Huzhou University Excellent Graduate Course Project(YJGX24003) and Postgraduate Research and Innovation Project of Huzhou University(2025KYCX57).

摘要: 针对现有研究尚未考虑药方会随着患者的病情动态变化以及药物之间存在副作用等问题,提出了一种基于动态病情建模的药物组合推荐模型MRNET(Medical recommendation network)。该模型首先对相关实体进行关联,并运用图卷积网络进行预训练,挖掘出实体之间潜在的关联信息,为后续的动态病情建模和药物组合推荐提供数据支持。随后,通过Transformer获取纵向病情动态特征,展现出病情的动态演变过程;同时,通过横向对比诊断和程序的相似度,能考虑到不同药方在相似病情和诊断下的适用性和差异性。将横向对比与纵向病情动态特征相结合,使得模型在药物推荐过程中能够更加全面地评估药物组合的合理性和适用性。最后,引入药物副作用,其有助于筛选出更安全、更有效的药物组合,提高药物推荐的精准度和安全性。将所提模型与基线模型进行对比实验,实验结果表明,相比现有最优模型,MRNET在Jaccard,F1-score和PRAUC指标上分别提高了2.07%,1.96%和1.72%。MRNET在这些重要指标上展现出的优势,充分证明了其在药物组合推荐方面的优越性。

关键词: 药物组合推荐, 动态病情建模, 图卷积网络, Transformer, 药物副作用

Abstract: Addressing critical gaps in existing research regarding dynamic prescription adaptation to evolving patient conditions and drug-drug interactions,this study proposes MRNET(Medical Recommendation Network),a novel dynamic disease modeling framework for optimized drug combination recommendation.The model uses the graph convolutional network for pre-training to mine the potential association information between entities by associating related entities and providing data support for subsequent dynamic disease modeling and drug combination recommendation.Subsequectly,the MRNET employs Transformer-based temporal modeling to capture longitudinal disease progression patterns,effectively characterizing dynamic clinical state transitions.At the same time,by comparing the similarity of diagnoses and procedures horizontally,the applicability and differences of different prescriptions under similar conditions and diagnoses can be considered.The combination of horizontal comparison and longitudinal disease dynamics enables the model to more comprehensively evaluate the rationality and applicability of drug combinations in the drug recommendation process.Finally,the introduction of drug side effects can screen out safer and more effective drug combinations,and improve the accuracy and safety of drug recommendations.Experimental validation demonstrates MRNET’s superior performance,achieving improvements of 2.07%,1.96%,and 1.72% in Jaccard similarity,F1-score,and PRAUC metrics respectively over state-of-the-art baselines.The advantages of MRNET in these important metrics fully demonstrate its superiority in drug combination recommendation.

Key words: Drug combination recommendations, Dynamic disease modeling, Graph convolutional network, Transformer, Medication side effects

中图分类号: 

  • TP391
[1]WU L,HE X,WANG X,et al.A survey on accuracy-oriented neural recommendation:from collaborative filtering to information-rich recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(5):4425-4445.
[2]GAO C,ZHENG Y,LI N,et al.A survey of graph neural networks for recommender systems:challenges,methods,and directions[J].ACM Transactions on Recommender Systems,2023,1(1):1-51.
[3]LIN S,MAO X,HONG L,et al.MATT-DDI:predicting multi-type drug-drug interactions via heterogeneous attention mechanisms[J].Methods,2023,220:1-10.
[4]HUO J,HONG Z,CHEN M,et al.MIFNet:multimodal interactive fusion network for medication rec-ommendation[J].The Journal of Supercomputing,2024,80:12313-12345.
[5]LIU J,WAN Z,HU X,et al.Safe drug recommen-dationthrough forward data imputation and recurrent residual neural network[J].Applied Soft Computing,2024,161:111723.
[6]ZHENG Z,CHAO W,QIU Z,et al.Harnessing large language models for text-rich sequential recommendation[C]//Procee-dings of the ACM on Web Conference.2024:3207-3216.
[7]CHOI E,BAHADORI M T,SUN J,et al.Retain:an interpretable predictive model for healthcare using reverse time attention mechanism[C]//Proceedings of the 30th International Confe-rence on Neural Information Processing Systems.2016:3512-3520.
[8]SHANG J,XIAO C,MA T,et al.GAMENet:graph augmented memory networks for recommending medication combination[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:1126-1133.
[9]BEGUM S G,SREE P K.Drug recommendations using a “re-views and sentiment analysis” by a recurrent neural network[J].Indonesian Journal of Multidisciplinary Science,2023,2(9):3085-3094.
[10]LI X,LIANG S,HOU Y,et al.StratMed:relevance stratification between biomedical entities for sparsity on medication recommendation[J].Knowledge-Based Systems,2024,284:111239.
[11]ZHANG Y,CHEN R,TANG J,et al.LEAP:learning to prescribe effective and safe treatment combinations for multimorbidity[C]//Proceedings of the 23rd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining.2017:1315-1324.
[12]WANG L,ZHANG W,HE X,et al.Personalized prescription for comorbidity[C]//Database Systems for Advanced Applications:23rd International Conference(DASFAA 2018).Gold Coast,QLD,Part II 23.Springer International Publishing,2018:3-19.
[13]LIANG X,YANG J,LU G,et al.CompNet:Com-petitive neural network for palmprint recognition using learnable Gabor kernels[J].IEEE Signal Processing Letters,2021,28:1739-1743.
[14]WANG S.SeqMed:recommending medication combination with sequence generative adversarial nets[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine(BIBM).IEEE,2020:2664-2671.
[15]MONTALVO L,VILLANUEVA E.Drug recommendation system for geriatric patients based on bayesian networks and evolutionary computation[C]//Intelligent Human Systems Integration 2020:Proceedings of the 3rd International Conference on Intelligent Human Systems Integration(IHSI 2020):Integrating People and Intelligent Systems,2020:492-497.
[16]YANG C,XIAO C,MA F,et al.SafeDrug:dual molecular graph encoders for recommending effective and safe drug combinations[J].arXiv:2105.02711,2021.
[17]YANG C,XIAO C,GLASS L,et al.Change matters:medication change prediction with recurrent residual networks[J].arXiv:2105.01876,2021.
[18]WU R,QIU Z,JIANG J,et al.Conditional generation net formedication recommendation[C]//Proceedings of the ACM Web Conference 2022.2022:935-945.
[19]JOHNSON A E W,POLLARD T J,SHEN L,et al.MIMIC-III,a freely accessible critical care database[J].Scientific Data,2016,3(1):1-9.
[20]LE H,TRAN T,VENKATESH S.Dual memory neural computer for asynchronous two-view sequential learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1637-1645.
[21]YANG N,ZENG K,WU Q,et al.Molerec:combinatorial drug recommendation with substructure-aware molecular representation learning[C]//Proceedings of the ACM Web Conference 2023.2023:4075-4085.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!