计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 213-222.doi: 10.11896/jsjkx.250300117

• 人工智能 • 上一篇    下一篇

基于实例级提示生成的多源域泛化故障诊断方法

李叔罡1, 李明嘉1, 袁龙辉1, 齐光鹏2,3, 刘驰1   

  1. 1 北京理工大学计算机学院 北京 100081
    2 浪潮集团有限公司 济南 250101
    3 浪潮云洲工业互联网有限公司 济南 250098
  • 收稿日期:2025-03-24 修回日期:2025-05-14 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 刘驰(chiliu@bit.edu.cn)
  • 作者简介:(shugangli@bit.edu.cn)

Multi-source Domain Generalization Fault Diagnosis Method Based on Instance-level PromptGeneration

LI Shugang1, LI Mingjia1, YUAN Longhui1, QI Guangpeng2,3, LIU Chi1   

  1. 1 School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China
    2 INSPUR Group Co.,Ltd.,Jinan 250101,China
    3 INSPUR Yunzhou Industrial Internet Co.,Ltd.,Jinan 250098,China
  • Received:2025-03-24 Revised:2025-05-14 Online:2025-11-15 Published:2025-11-06
  • About author:LI Shugang,born in 1996,Ph.D candidate.His main research interests include fault diagnosis,transfer learning and object detection.
    LIU Chi,born in 1984,Ph.D,professor,Ph.D.supervisor,is a distinguished member of CCF(No.33627D).His main research interest is big data processing for Internet of Things.

摘要: 提出了一种基于实例级提示生成的多源域泛化故障诊断方法,以提升模型在跨域环境下的故障识别能力。该方法利用跨频对齐提示生成器动态生成实例级提示,能够针对不同样本的局部特征进行精细化建模,并结合语义一致性增强模块,保证实例级提示的语义有效性。此外,为了进一步提升模型在跨域任务中的稳定性和适应性,引入记忆库增强对比学习模块,充分利用跨域正负样本,通过存储和动态更新训练样本的特征表征,扩大正负样本分布的多样性,提升跨域特征学习的有效性。同时,采用傅里叶混合模块在频域对不同源域样本进行特征混合,动态生成仿真样本,增强模型在未见目标域上的适应能力。在CWRU和Paderborn数据集上进行的实验结果表明,该方法在多个未见目标域上均优于现有方法。其中在CWRU数据集上的平均分类准确率达到93.54%,比当前最优方法提升1.52%;在Paderborn数据集上的平均分类准确率达到90.52%,比当前最优方法提升1.30%。实验结果证明了该方法在工业故障诊断任务中的有效性和鲁棒性。

关键词: 故障诊断, 提示学习, 多源域泛化, 迁移学习, 对比学习

Abstract: This paper proposes multi-source domain generalization fault diagnosis method based on instance-level prompt generation to enhance the model's fault recognition capability in cross-domain environments.This method employs a cross-frequency aligned prompt generator to dynamically generate instance-level prompts,enabling refined modeling of local features across diffe-rent samples.It incorporates a semantic consistency enhancement module to ensure the semantic validity of instance-level prompts.Furthermore,to improve the model's stability and adaptability in cross-domain tasks,a memory bank-enhanced contrastive learning module is introduced,which fully utilizes cross-domain positive and negative samples.By storing and dynamically updating feature representations of training samples,this module expands the diversity of positive and negative sample distributions and enhances the effectiveness of cross-domain feature learning.Additionally,a FourierMix module is adopted to perform frequency-domain feature mixing of samples from different source domains,dynamically generating simulated samples to strengthen the model's adaptability on unseen target domains.Experimental results on CWRU and Paderborn datasets demonstrate that the proposed method outperforms existing approaches across multiple unseen target domains,achieving average classification accuracies of 93.54%(1.52% improvement over state-of-the-art) on CWRU dataset and 90.52% (1.30% improvement) on Paderborn dataset.Experimental results prove its effectiveness and robustness in industrial fault diagnosis tasks.

Key words: Fault diagnosis, Prompt learning, Multi-source domain generalization, Transfer learning, Contrastive learning

中图分类号: 

  • TP181
[1]FANG W,ZHOU B,WANG K,et al.A Fault Diagnosis and Fault-Tolerant Control Method for Open-Switch Faults of Converters in DSEM Drive System [J].IEEE Transactions on Industrial Electronics,2024,71(8):8459-8470.
[2]JIN H,ZUO Z,WANG Y,et al.Small Fault Diagnosis With Gap Metric [J].IEEE Transactions on Systems,Man,and Cyberne-tics:Systems,2023,53(9):5715-5728.
[3]LYU K,WANG D,HUANG W,et al.Research on Fault Indicator for Integrated Fault Diagnosis System of PMSM Based on Stator Tooth Flux [J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2024,12(1):985-996.
[4]LI S,BU R,LI S,et al.Principal Properties Attention Matching for Partial Domain Adaptation in Fault Diagnosis [J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-12.
[5]ZHU Z,ZHAI W,LIU H,et al.Juggler-ResNet:A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks [J].IEEE Transactions on Industrial Informatics,2022,18(6):4224-4233.
[6]JIAO J,LIANG K,DING C,et al.Towards Prediction Con-straints:A Novel Domain Adaptation Method for Machine Fault Diagnosis [J].IEEE Transactions on Industrial Informatics,2022,18(10):7198-7207.
[7]XIAO G,PENG S,XIANG W,et al.CMFT:Contrastive Memory Feature Transfer for Nonshared-and-Imbalanced Unsupervised Domain Adaption [J].IEEE Transactions on Industrial Informatics,2023,19(8):9227-9238.
[8]SONG Y,LI Y,JIA L,et al.Retraining Strategy-Based Domain Adaption Network for Intelligent Fault Diagnosis [J].IEEE Transactions on Industrial Informatics,2020,16(9):6163-6171.
[9]LI S,XUAN J,WANG Z,et al.Noisy Open Set Adversarial Domain Adaption for Bearing Fault Diagnosis Based on Optimized Divergence [J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-17.
[10]CHEN L,LI Q,SHEN C,et al.Adversarial Domain-InvariantGeneralization:A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions [J].IEEE Transactions on Industrial Informatics,2022,18(3):1790-1800.
[11]LI Y,TIAN X,GONG M,et al.Deep domain generalization via conditional invariant adversarial networks[C]//Proceedings of the European Conference on Computer Vision.2018:624-639.
[12]LU F,TONG Q,JIANG X,et al.Prior knowledge embedding convolutional autoencoder:A single-source domain generalized fault diagnosis framework under small samples [J].Computers in Industry,2025,164:104169.
[13]RAGAB M,CHEN Z,ZHANG W,et al.Conditional contrastive domain generalization for fault diagnosis [J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-12.
[14]FAN Z,XU Q,JIANG C,et al.Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions [J].IEEE Transactions on Industrial Electronics,2024,71(1):965-974.
[15]HAN T,LI Y,QIAN M,et al.A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions [J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.
[16]QIAN Q,ZHOU J,QIN Y,et al.Relationship Transfer Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Different Working Conditions [J].IEEE Transactions on Industrial Informatics,2023,19(9):9898-9908.
[17]LI J,WANG Y,ZI Y,et al.Causal Consistency Network:A Collaborative Multimachine Generalization Method for Bearing Fault Diagnosis [J].IEEE Transactions on Industrial Informa-tics,2023,19(4):5915-5924.
[18]XIE S,ZHENG Z,CHEN L,et al.Learning semantic representations for unsupervised domain adaptation[C]//Proceedings of the International Conference on Machine Learning.PMLR,2018:5423-5432.
[19]PEI Z,CAO Z,LONG M,et al.Multi-adversarial domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2018.
[20]WANG Z,RAO Y,YU X,et al.Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(6):4381-4397.
[21]YANG L,LI X,WANG Y,et al.Fine-Grained Visual TextPrompting [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2025,47(3):1594-1609.
[22]LI S,LI B,SUN B,et al.Towards Visual-Prompt Temporal Answer Grounding in Instructional Video [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(12):8836-8853.
[23]ZHU P,WANG X,ZHU L,et al.Prompt-Based Learning forUnpaired Image Captioning [J].IEEE Transactions on Multimedia,2024,26:379-393.
[24]FANG H,XIONG P,XU L,et al.Transferring Image-CLIP to Video-Text Retrieval via Temporal Relations [J].IEEE Transactions on Multimedia,2023,25:7772-7785.
[25]ZHOU K,YANG J,LOY C C,et al.Learning to prompt forvision-language models [J].International Journal of Computer Vision,2022,130(9):2337-2348.
[26]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010.
[27]LI H,PAN S J,WANG S,et al.Domain generalization with adversarial feature learning[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE,2018:5400-5409.
[28]LYU F,LIANG J,LI S,et al.Improving generalization with domain convex game[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.IEEE,2023:24315-24324.
[29]VAN DER MAATEN L,HINTON G.Visualizing data usingt-SNE [J].Journal of Machine Learning Research,2008,9(86):2579-2605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!