计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 213-222.doi: 10.11896/jsjkx.250300117
李叔罡1, 李明嘉1, 袁龙辉1, 齐光鹏2,3, 刘驰1
LI Shugang1, LI Mingjia1, YUAN Longhui1, QI Guangpeng2,3, LIU Chi1
摘要: 提出了一种基于实例级提示生成的多源域泛化故障诊断方法,以提升模型在跨域环境下的故障识别能力。该方法利用跨频对齐提示生成器动态生成实例级提示,能够针对不同样本的局部特征进行精细化建模,并结合语义一致性增强模块,保证实例级提示的语义有效性。此外,为了进一步提升模型在跨域任务中的稳定性和适应性,引入记忆库增强对比学习模块,充分利用跨域正负样本,通过存储和动态更新训练样本的特征表征,扩大正负样本分布的多样性,提升跨域特征学习的有效性。同时,采用傅里叶混合模块在频域对不同源域样本进行特征混合,动态生成仿真样本,增强模型在未见目标域上的适应能力。在CWRU和Paderborn数据集上进行的实验结果表明,该方法在多个未见目标域上均优于现有方法。其中在CWRU数据集上的平均分类准确率达到93.54%,比当前最优方法提升1.52%;在Paderborn数据集上的平均分类准确率达到90.52%,比当前最优方法提升1.30%。实验结果证明了该方法在工业故障诊断任务中的有效性和鲁棒性。
中图分类号:
| [1]FANG W,ZHOU B,WANG K,et al.A Fault Diagnosis and Fault-Tolerant Control Method for Open-Switch Faults of Converters in DSEM Drive System [J].IEEE Transactions on Industrial Electronics,2024,71(8):8459-8470. [2]JIN H,ZUO Z,WANG Y,et al.Small Fault Diagnosis With Gap Metric [J].IEEE Transactions on Systems,Man,and Cyberne-tics:Systems,2023,53(9):5715-5728. [3]LYU K,WANG D,HUANG W,et al.Research on Fault Indicator for Integrated Fault Diagnosis System of PMSM Based on Stator Tooth Flux [J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2024,12(1):985-996. [4]LI S,BU R,LI S,et al.Principal Properties Attention Matching for Partial Domain Adaptation in Fault Diagnosis [J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-12. [5]ZHU Z,ZHAI W,LIU H,et al.Juggler-ResNet:A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks [J].IEEE Transactions on Industrial Informatics,2022,18(6):4224-4233. [6]JIAO J,LIANG K,DING C,et al.Towards Prediction Con-straints:A Novel Domain Adaptation Method for Machine Fault Diagnosis [J].IEEE Transactions on Industrial Informatics,2022,18(10):7198-7207. [7]XIAO G,PENG S,XIANG W,et al.CMFT:Contrastive Memory Feature Transfer for Nonshared-and-Imbalanced Unsupervised Domain Adaption [J].IEEE Transactions on Industrial Informatics,2023,19(8):9227-9238. [8]SONG Y,LI Y,JIA L,et al.Retraining Strategy-Based Domain Adaption Network for Intelligent Fault Diagnosis [J].IEEE Transactions on Industrial Informatics,2020,16(9):6163-6171. [9]LI S,XUAN J,WANG Z,et al.Noisy Open Set Adversarial Domain Adaption for Bearing Fault Diagnosis Based on Optimized Divergence [J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-17. [10]CHEN L,LI Q,SHEN C,et al.Adversarial Domain-InvariantGeneralization:A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions [J].IEEE Transactions on Industrial Informatics,2022,18(3):1790-1800. [11]LI Y,TIAN X,GONG M,et al.Deep domain generalization via conditional invariant adversarial networks[C]//Proceedings of the European Conference on Computer Vision.2018:624-639. [12]LU F,TONG Q,JIANG X,et al.Prior knowledge embedding convolutional autoencoder:A single-source domain generalized fault diagnosis framework under small samples [J].Computers in Industry,2025,164:104169. [13]RAGAB M,CHEN Z,ZHANG W,et al.Conditional contrastive domain generalization for fault diagnosis [J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-12. [14]FAN Z,XU Q,JIANG C,et al.Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions [J].IEEE Transactions on Industrial Electronics,2024,71(1):965-974. [15]HAN T,LI Y,QIAN M,et al.A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions [J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11. [16]QIAN Q,ZHOU J,QIN Y,et al.Relationship Transfer Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Different Working Conditions [J].IEEE Transactions on Industrial Informatics,2023,19(9):9898-9908. [17]LI J,WANG Y,ZI Y,et al.Causal Consistency Network:A Collaborative Multimachine Generalization Method for Bearing Fault Diagnosis [J].IEEE Transactions on Industrial Informa-tics,2023,19(4):5915-5924. [18]XIE S,ZHENG Z,CHEN L,et al.Learning semantic representations for unsupervised domain adaptation[C]//Proceedings of the International Conference on Machine Learning.PMLR,2018:5423-5432. [19]PEI Z,CAO Z,LONG M,et al.Multi-adversarial domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2018. [20]WANG Z,RAO Y,YU X,et al.Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(6):4381-4397. [21]YANG L,LI X,WANG Y,et al.Fine-Grained Visual TextPrompting [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2025,47(3):1594-1609. [22]LI S,LI B,SUN B,et al.Towards Visual-Prompt Temporal Answer Grounding in Instructional Video [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(12):8836-8853. [23]ZHU P,WANG X,ZHU L,et al.Prompt-Based Learning forUnpaired Image Captioning [J].IEEE Transactions on Multimedia,2024,26:379-393. [24]FANG H,XIONG P,XU L,et al.Transferring Image-CLIP to Video-Text Retrieval via Temporal Relations [J].IEEE Transactions on Multimedia,2023,25:7772-7785. [25]ZHOU K,YANG J,LOY C C,et al.Learning to prompt forvision-language models [J].International Journal of Computer Vision,2022,130(9):2337-2348. [26]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [27]LI H,PAN S J,WANG S,et al.Domain generalization with adversarial feature learning[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE,2018:5400-5409. [28]LYU F,LIANG J,LI S,et al.Improving generalization with domain convex game[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.IEEE,2023:24315-24324. [29]VAN DER MAATEN L,HINTON G.Visualizing data usingt-SNE [J].Journal of Machine Learning Research,2008,9(86):2579-2605. |
|
||