计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 25-36.doi: 10.11896/jsjkx.250600104
陈秀1, 张馨匀1, 程煜婷1, 陈伟1, 黄正行3, 刘振宇4, 张远鹏1,2
CHEN Xiu1, ZHANG Xinyun1, CHENG Yuting1, CHEN Wei1, HUANG Zhengxing3, LIU Zhenyu4, ZHANG Yuanpeng1,2
摘要: 随着人工智能与医疗健康的深度融合,临床数据正经历从“辅助决策”到“驱动决策”的范式转变。临床数据包括患者症状、诊断影像、治疗记录等结构化与非结构化信息,为医疗决策提供重要支撑。然而,由于“领域偏移”现象的普遍存在,临床AI模型训练评估依赖的数据独立同分布假设(i.i.d.)失效,模型的跨域泛化能力被严重制约。域适应和域泛化技术可有效提升模型跨域表现。前者利用无标注目标域数据调整模型,使其适配新环境;后者基于源域数据学习域不变特征,实现无目标域数据下的泛化。针对两类技术在临床数据建模中的应用进展,按浅层、深层方法分类,展示其在不同数据类型中的应用场景,并总结了当前各类方法在泛化性能、数据依赖性与可解释性等方面的表现差异。
中图分类号:
[1]HAH H,GOLDIN D S.How Clinicians Perceive Artificial Intel-ligence-Assisted Technologies in Diagnostic Decision Making:Mixed Methods Approach[J].Journal of Medical Internet Research,2021,23(12):e33540. [2]LIANG J Y,QIAN Y H,LI D Y,et al.Granular Computing Theory and Methods for Big Data Mining[J].Scientia Sinica:Informationis,2015,45(11):1355-1369. [3]GAO S,HUANG X Y,WEI X Y,et al.Insulator Defect Detection Method Based on Domain Knowledge Transfer[J].Science Technology and Engineering,2023,23(14):6054-6062. [4]TAO J,XU H.Discovering Domain-Invariant Subspace for Depression Recognition by Jointly Exploiting Appearance and Dynamics Feature Representations[J].IEEE Access,2019,7:186417-186436. [5]GOETZ M,WEBER C,BINCZYK F,et al.DALSA:DomainAdaptation for Supervised Learning From Sparsely Annotated MR Images[J].IEEE Transactions on Medical Imaging,2016,35(1):184-196. [6]CHEN K,LIU J,WAN R,et al.Unsupervised Domain Adaptation for Low-Dose CT Reconstruction via Bayesian Uncertainty Alignment[J].IEEE Transactions on Neural Networks and Learning Systems,2024,36(5):8525-8539. [7]ZHAO X,SICILIA A,MINHAS D S,et al.Robust White Matter Hyperintensity Segmentation On Unseen Domain[C]//2021 IEEE 18th International Symposium on Biomedical Imaging(ISBI).IEEE,2021:1047-1051. [8]XIA J,ZENG L,LI T,et al.PKDG:Prior Knowledge based Domain Generalization Model for fundus image segmentation[J/OL].Research Square,2024.https://doi.org/10.21203/rs.3.rs-4703557/v1. [9]CARLONI G,TSAFTARIS S A,COLANTONIO S.CROCO-DILE:Causality Aids RObustness via COntrastive DIsentangled LEarning[C]//International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging.Cham:Springer,2025:105-116. [10]WACHINGER C,REUTER M.Domain Adaptation for Alzheimer’s Disease Diagnostics[J].NeuroImage,2016,139:470-479. [11]CHEPLYINA V,PENA I P,PEDERSEN J H,et al.TransferLearning for Multicenter Classification of Chronic Obstructive Pulmonary Disease[J].IEEE Journal of Biomedical and Health Informatics,2018,22(5):1486-1496. [12]XIA K,NI T,YIN H,et al.Cross-Domain Classification Model With Knowledge Utilization Maximization for Recognition of Epileptic EEG Signals[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,18(1):53-61. [13]LI W,ZHAO Y,CHEN X,et al.Detecting Alzheimer’s Disease on Small Dataset:A Knowledge Transfer Perspective[J].IEEE Journal of Biomedical and Health Informatics,2019,23(3):1234-1242. [14]JIANG L,LIU S,MA Z,et al.Regularized RKHS-Based Subspace Learning for Motor Imagery Classification[J].Entropy,2022,24(2):195. [15]PENG Y,WANG W,KONG W,et al.Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals[J].IEEE Transactions on Affective Computing,2022,13(4):1941-1958. [16]CUI J,JIN X,HU H,et al.Dynamic Distribution AlignmentWith Dual-Subspace Mapping for Cross-Subject Driver Mental State Detection[J].IEEE Transactions on Cognitive and Deve-lopmental Systems,2022,14(4):1705-1716. [17]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-Adversarial Training of Neural Networks[M]//Domain Adaptation in Computer Vision Applications.Cham:Springer,2017:189-209. [18]JIE L,LIANG P,ZHAO Z,et al.ADAN:An Adversarial Do-main Adaptation Neural Network for Early Gastric Cancer Prediction[C]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC).2022:2169-2172. [19]REN P,SHI X,YU Z,et al.Single-cell assignment using multiple-adversarial domain adaptation network with large-scale references[J].Cell Reports Methods,2023,3(9):100577. [20]SOMERS P,HOLDENRIED-KRAFFT S,ZAHN J,et al.Cystoscopic depth estimation using gated adversarial domain adaptation[J].Biomedical Engineering Letters,2023,13(2):141-151. [21]QIN X,BUI F,HAN Z.Semantically preserving adversarial unsupervised domain adaptation network for improving disease recognition from chest x-rays[J].Computerized Medical Imaging and Graphics,2023,107:102232. [22]BAO G,ZHUANG N,TONG L,et al.Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition[J].Frontiers in Human Neuroscience,2021,14:605246. [23]LIU W,NI Z,CHEN Q,et al.Attention-Guided Partial Domain Adaptation for Automated Pneumonia Diagnosis From Chest X-Ray Images[J].IEEE Journal of Biomedical and Health Informatics,2023,27(12):5848-5859. [24]HONG X,ZHENG Q,LIU L,et al.Dynamic Joint Domain Adaptation Network for Motor Imagery Classification[J].IEEE Transactions on Neural Systems and Rehabilitation Enginee-ring,2021,29:556-565. [25]OFER A,OPHIR A,YOAV N,et al.Supervised autoencoderdenoiser for non-stationarity in multi-session EEG-based BCI[J].Journal of Neural Engineering,2025,22(2):026043. [26]CUI H,LI Y,WANG Y,et al.Toward Accurate Cardiac MRI Segmentation With Variational Autoencoder-Based Unsupervised Domain Adaptation[J].IEEE Transactions on Medical Imaging,2024,43(8):2924-2936. [27]JIANG K,QUAN L,GONG T.Disentangled representation and cross-modality image translation based unsupervised domain adaptation method for abdominal organ segmentation[J].International Journal of Computer Assisted Radiology and Surgery,2022,17(6):1101-1113. [28]WANG J,LAN C,LIU C,et al.Generalizing to Unseen Domains:A Survey on Domain Generalization[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(8):8052-8072. [29]GUO B,LU D,SZUMEL G,et al.The impact of scanner domain shift on deep learning performance in medical imaging:an experimental study[J].arXiv:2409.04368,2024. [30]ATHALYE C,ARNAOUT R.Domain-guided dataaugmenta-tion for deep learning on medical imaging[J].PLOS One,2023,18(3):e0282532. [31]KAISTI M,LAITALA J,WONG D,et al.Domain randomization using synthetic electrocardiograms for training neural networks[J].Artificial Intelligence in Medicine,2023,143:102583. [32]AYODELE K P,IKEZOGWO W O,KOMOLAFE M A,et al.Supervised domain generalization for integration of disparate scalp EEG datasets for automatic epileptic seizure detection[J].Computers in Biology and Medicine,2020,120:103757. [33]HE Y,SHEN X,XU R,et al.Covariate-shift generalization via random sample weighting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:11828-11836. [34]LIU B,ZHANG Y,WANG S,et al.DGSSA:Domain generalization with structural and stylistic augmentation for retinal vessel segmentation[J].arXiv:2501.03466,2025. [35]SOLEIMANI M,TOOSI M H,MOHAMMADI S,et al.Using Test-Time Data Augmentation for Cross-Domain Atrial Fibrillation Detection from ECG Signals[J].arXiv:2503.13483,2025. [36]YE Z.SSL-DG:rethinking and fusing semi-supervised learning and domain generalization in medical image segmentation[J].arXiv:2311.02583,2023. [37]PATIL A,MEHTO A,NALBAND S.Enhancing skin lesion diagnosis with data augmentation techniques:a review of the state-of-the-art[J].Multimedia Tools and Applications,2025,84:25325-25364. [38]APELLANIZ P A,PARRAS J,ZAZO S.Improving SyntheticData Generation Through Federated Learning in Scarce and Heterogeneous Data Scenarios[J].Big Data and Cognitive Computing,Multidisciplinary Digital Publishing Institute,2025,9(2):18. [39]YU J,ZHU Y,FU P,et al.Robust Polyp Detection and Diagnosis through Compositional Prompt-Guided Diffusion Models[J].arXiv:2502.17951,2025. [40]CHE H,WU Y,JIN H,et al.FedDAG:Federated Domain Adversarial Generation Towards Generalizable Medical Image Analysis[J].arXiv:2501.13967,2025. [41]GUO L L,STEINBERG E,FLEMING S L,et al.EHR foundation models improve robustness in the presence of temporal distribution shift[J].Scientific Reports,2023,13(1):3767. [42]WU Z,YAO H,LIEBOVITZ D,et al.An Iterative Self-Learning Framework for Medical Domain Generalization[J].Advances in Neural Information Processing Systems,2023,36:54833-54854. [43]HONG J,LIU B,LONG G,et al.Rethinking domain generalization in medical image segmentation:One image as one domain[J].arXiv:2501.04741,2025. [44]KIM H,SHIN Y,HWANG D.DiMix:Disentangle-and-MixBased Domain Generalizable Medical Image Segmentation[C]//Medical Image Computing and Computer Assisted Interven-tion-MICCAI 2023.Cham:Springer,2023:242-251. [45]QIN W Q,BAO X,CHEN X,et al.A method for predicting the synergy of anticancer drug combinations based on graph attention network [J].Journal of Nantong University(Natural Science Edition),2025,24(1):10-17. [46]GU R,ZHANG J,HUANG R,et al.Domain Composition and Attention for Unseen-Domain Generalizable Medical Image Segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021.Cham:Springer,2021:241-250. [47]XU Y,ZHANG T.Boundless Across Domains:A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation[J].arXiv:2411.14883,2024. [48]LI C,LIN X,MAO Y,et al.Domain generalization on medical imaging classification using episodic training with task augmentation[J].Computers in Biology and Medicine,2022,141:105144. [49]KREUTER D,TULL S,GILBEY J,et al.Dis-AE:Multi-do-main & Multi-task Generalisation on Real-World Clinical Data[J].arXiv:2306.09177,2023. [50]MATSUN A,MOHAMED D O,CHOKUWA S,et al.DGM-DR:Domain Generalization with Mutual Information Regularized Diabetic Retinopathy Classification[C]//Domain Adaptation and Representation Transfer.Cham:Springer,2024:115-125. [51]RADWAN A,OSMAN I,SHEHATA M S.Universal medical imaging model for domain generalization with data privacy[J].arXiv:2407.14719,2024. [52]DENG Z,XU Z,ISSHIKI T,et al.FedSemiDG:Domain Generalized Federated Semi-supervised Medical Image Segmentation[J].arXiv:2501.07378,2025. [53]CHEN K,WANG X H,SHI X L,et al.A graph neural network method for predicting rutting in asphalt pavements based on causal inference [J].Journal of Nantong University(Natural Science Edition),2025,24(1):18-27,50. [54]FEDER A,WALD Y,SHI C,et al.Data augmentations for improved(large) language model generalization[J].Advances in Neural Information Processing Systems,2023,36:70638-70653. [55]CARVALHO J,ZHANG M,GEYER R,et al.Invariant anomaly detection under distribution shifts:a causal perspective[J].Advances in Neural Information Processing Systems,2023,36:56310-56337. [56]SHETH P,MORAFFAH R,CANDAN K S,et al.Domain Generalization--A Causal Perspective[J].arXiv:2209.15177,2022. [57]CUI X,CAO J,LAI X,et al.Cluster Embedding Joint-Probability-Discrepancy Transfer for Cross-Subject Seizure Detection[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2023,31:593-605. [58]CHAI X,WANG Q,ZHAO Y,et al.Multi-subject subspace alignment for non-stationary EEG-based emotion recognition[J].Technology and Health Care:Official Journal of the European Society for Engineering and Medicine,2018,26(S1):327-335. [59]JIANG L,LIU S,MA Z,et al.Regularized RKHS-Based Subspace Learning for Motor Imagery Classification[J].Entropy,2022,24(2):195. [60]EKONG F,YU Y,PATAMIA R A,et al.RetVes segmentation:A pseudo-labeling and feature knowledge distillation optimization technique for retinal vessel channel enhancement[J].Computers in Biology and Medicine,2024,182:109150. [61]CUI H,YUWEN C,JIANG L,et al.Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation[J].Computers in Bio-logy and Medicine,2021,136:104726. [62]KAUR S,GUMP A,XIAO Y,et al.CRoP:Context-wise Robust Static Human-Sensing Personalization[C]//Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Techno-logies.2025:1-34. [63]BERNECKER T,PETERS A,SCHLETT C L,et al.Fednorm:Modality-based normalization in federated learning for multi-modal liver segmentation[J].arXiv:2205.11096,2022. [64]WANG S,YU L,LI K,et al.DoFE:Domain-Oriented FeatureEmbedding for Generalizable Fundus Image Segmentation on Unseen Datasets[J].IEEE Transactions on Medical Imaging,2020,39(12):4237-4248. [65]WONG A,OTLES E,DONNELLY J P,et al.External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients[J].JAMA Internal Medicine,2021,181(8):1065-1070. [66]GUO L L,PFOHL S R,FRIES J,et al.Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine[J].Scientific Reports,2022,12(1):2726. [67]COHEN S N,FOSTER J,FOSTER P,et al.Subtle variation in sepsis-III definitions markedly influences predictive performance within and across methods[J].Scientific Reports,2024,14(1):1920. [68]ZHENG J,CAI X,QIU S,et al.Spurious forgetting in continual learning of language models[J].arXiv:2501.13453,2025. [69]ZECH J R,BADGELEY M A,LIU M,et al.Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs:a cross-sectional study[J].PLoS Medicine,2018,15(11):e1002683. [70]CARUANA R,LOU Y,GEHRKE J,et al.Intelligible Modelsfor HealthCare:Predicting Pneumonia Risk and Hospital 30-day Readmission[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2015:1721-1730. [71]DEGRAVE A J,JANIZEK J D,LEE S I.AI for radiographic COVID-19 detection selects shortcuts over signal[J].Nature Machine Intelligence,2021,3(7):610-619. |
|