计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 271-278.doi: 10.11896/jsjkx.201200094

• 人工智能 • 上一篇    下一篇

基于风格感知的无监督领域适应算法

宁秋怡, 史小静, 段湘煜, 张民   

  1. 苏州大学计算机科学与技术学院 江苏 苏州215006
  • 收稿日期:2020-12-09 修回日期:2021-03-21 出版日期:2022-01-15 发布日期:2022-01-18
  • 通讯作者: 段湘煜(xiangyuduan@suda.edu.cn)
  • 作者简介:qiuyining@stu.suda.edu.cn
  • 基金资助:
    国家自然科学基金(61673289)

Unsupervised Domain Adaptation Based on Style Aware

NING Qiu-yi, SHI Xiao-jing, DUAN Xiang-yu, ZHANG Min   

  1. School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Received:2020-12-09 Revised:2021-03-21 Online:2022-01-15 Published:2022-01-18
  • About author:NING Qiu-yi,born in 1995,postgra-duate.Her main research interests include machine translation and domain adaptation.
    DUAN Xiang-yu,born in 1976,Ph.D,professor.His main research interests include machine translationand cross-language information processing.
  • Supported by:
    National Natural Science Foundation of China(61673289).

摘要: 近年来,神经机器翻译的译文质量取得了显著的进步,但是其在训练过程中严重依赖平行的双语句子对。然而对于电子商务领域来说,平行资源是稀缺的,此外,文化的不同导致产品信息表达存在风格差异。为了解决这两个问题,提出了一种基于风格感知的无监督领域适应算法,该算法在互训练方法中充分利用电子商务单语数据,同时引入拟知识蒸馏的方法处理风格差异。通过获取电商产品数据信息构建非平行双语语料,基于该语料以及中英新闻平行语料进行多组实验,结果表明,相比各种无监督领域适应方法,该算法显著提高了翻译质量,较最强的基线系统提高了约5个BLEU点。此外,将该算法在Ted,Law和Medical OPUS 3类数据上进一步拓展应用,均取得了更佳的翻译效果。

关键词: 电子商务, 风格感知, 机器翻译, 领域适应, 无监督

Abstract: In recent years,neural machine translation has made significant progress in translation quality,but it relies on parallel bilingual sentence pairs heavily during the training process.However,parallel resources are scarce for the e-commerce domain,in addition,cultural differences lead to stylistic differences in product information expression.To solve these two problems,a style-aware unsupervised domain adaptation algorithm is proposed,which makes full use of e-commerce monolingual data in the mutual training method,while introducing quasi knowledge distillation approach to deal with style differences.We construct non-parallel bilingual corpus by obtaining e-commerce product data information,and then carry out experiments based on the aforementioned corpus and Chinese and English news parallel corpus.The results show that the algorithm significantly improves translation qua-lity compared to various unsupervised domain adaptation methods,improves about 5 BLEU points compared with the strongest baseline system.In addition,the algorithm is further extended to Ted,Law and Medical OPUS data,all of which achieve better translation results.

Key words: Domain adaptation, E-commerce, Machine translation, Style aware, Unsupervised

中图分类号: 

  • TP183
[1]CURREY A,BARONE A V M,HEAFIELD K.Copied Monolingual Data Improves Low-Resource Neural Machine Translation[C]//Proceedings of the Second Conference on Machine Translation.Denmark:Association for Computational Linguistics,2017:148-156.
[2]SENNRICH R,HADDOW B,BIRCH A.Improving Neural Machine Translation Models with Monolingual Data[C]//Procee-dings of the 54th Annual Meeting of the Association for Computational Linguistics.Germany:Association for Computational Linguistics,2016:86-96.
[3]DOU Z Y,HU J J,ANASTASOPOULOS A,et al.Unsuper-vised domain adaptation for neural machine translation with domain-aware feature embeddings[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Proces-sing and the 9th International Joint Conference on Natural Language Processing.Hong Kong:Association for Computational Linguistics,2019:1417-1422.
[4]HU J,XIA M,NEUBIG G,et al.Domain Adaptation of Neural Machine Translation by Lexicon Induction[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics.Italy:Association for Computational Linguistics,2019:2989-3001.
[5]SHEN Y,LEONARD D,PAVEL P,et al.Word-based Domain Adaptation for Neural Machine Translation[C]//Proceedings of the International Workshop on Spoken Language Translation.Belgium,2019.
[6]ZHANG Z,LIU S,LI M,et al.Joint Training for Neural Machine Translation Models with Monolingual Data[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.USA:AAAI Press,2018:555-562.
[7]HE D,XIA Y,QIN T,et al.Dual Learning for Machine Translation[J].Advances in Neural Information Processing Systems 29:Annual Conference on Neural Information Processing Systems,2016(12):820-828.
[8]ZHEN Y,WEI C,FENG W,et al.Unsupervised Domain Adaptation for Neural Machine Translation[C]//24th International Conference on Pattern Recognition.China:IEEE Computer So-ciety,2018:338-343.
[9]ZHENG Z,ZHOU H,HUANG S,et al.Mirror-generative neural machine translation[C]//8th International Conference on Learning Representations.Ethiopia:ICLR,2020.
[10]NIU X,RAO S,CARPUAT M.Multi-task neural models fortranslating between styles within and across languages[C]//Proceedings of the 27th International Conference on Computational Linguistics.USA:Association for Computational Linguistics,2018:1008-1020.
[11]KOEHN P,OCH F J,MARCU D.Statistical Phrase-BasedTranslation[C]//Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics.Canada:Association for Computational Linguistics,2013:48-54.
[12]ARTETXE M,LABAKA G,AGIRRE E.An Effective Ap-proach to Unsupervised Machine Translation[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics.Italy:Association for Computational Linguistics,2019:194-203.
[13]ARTETXE M,LABAKA G,AGIRRE E.Unsupervised Statisti-cal Machine Translation[C]//Proceedings of the 2018 Confe-rence on Empirical Methods in Natural Language Processing.Belgium:Association for Computational Linguistics,2018:3623-3642.
[14]LUONG T,PHAM H,MANNING C D.Effective Approaches to Attention-based Neural Machine Translation[C]//Procee-dings of the 2015 Conference on Empirical Methods in Natural Language Processing.Lisbon.Portugal:Association for Computational Linguistics,2015:1412-1421.
[15]ASHISH V,NOAM S,NIKI P,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30.USA:NIPS,2017:5998-6008.
[16]YOON K,ALEXANDER M R.Sequence-Level Knowledge Distillation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.USA:Association for Computational Linguistics,2016:1317-1327.
[17]SUTSKEVER I,ORIOL V,QUOC V L.Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems 27.Canada:NIPS,2014:3104-3112.
[18]SENNRICH R,HADDOW B,BIRCH A.Neural MachineTranslation of Rare Words with Subword Units[C]//Procee-dings of the 54th Annual Meeting of the Association for Computational Linguistics.Germany:Association for Computational Linguistics,2016:1715-1725.
[19]PAPINENI K,ROUKOS S,WARD T,et al.Bleu:a method for automatic evaluation of machine translation [C]//Proceedings of the 40th annual meeting of the Association for Computational Linguistics.USA:Association for Computational Linguistics,2002:311-318.
[20]CHRIS D,VICTOR C,NOAH A S.A Simple,Fast,and Effective Reparameterization of IBM Model 2[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics.USA:Association for Computational Linguistics,2013:644-648.
[21]HU D M,ZHU C G,HU C,et al.Multilingual Text EmotionalAnalysis with Pre-trained Model and Attention Mechanism[J].Journal of Chinese Mini-Micro Computer Systems,2020,41(2):278-284.
[22]QIAO B W,LI J H.Neural Machine Translation CombiningSource Semantic Roles[J].Computer Science,2020,47(2):163-168.
[1] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[2] 李斌, 万源.
基于相似度矩阵学习和矩阵校正的无监督多视角特征选择
Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment
计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124
[3] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[4] 董振恒, 任维平, 游新冬, 吕学强.
融入新能源领域术语知识的机器翻译方法
Machine Translation Method Integrating New Energy Terminology Knowledge
计算机科学, 2022, 49(6): 305-312. https://doi.org/10.11896/jsjkx.210500117
[5] 刘俊鹏, 苏劲松, 黄德根.
融合特定语言适配模块的多语言神经机器翻译
Incorporating Language-specific Adapter into Multilingual Neural Machine Translation
计算机科学, 2022, 49(1): 17-23. https://doi.org/10.11896/jsjkx.210900005
[6] 于东, 谢婉莹, 谷舒豪, 冯洋.
基于语种关联度课程学习的多语言神经机器翻译
Similarity-based Curriculum Learning for Multilingual Neural Machine Translation
计算机科学, 2022, 49(1): 24-30. https://doi.org/10.11896/jsjkx.210800254
[7] 侯宏旭, 孙硕, 乌尼尔.
蒙汉神经机器翻译研究综述
Survey of Mongolian-Chinese Neural Machine Translation
计算机科学, 2022, 49(1): 31-40. https://doi.org/10.11896/jsjkx.210900006
[8] 刘妍, 熊德意.
面向小语种机器翻译的平行语料库构建方法
Construction Method of Parallel Corpus for Minority Language Machine Translation
计算机科学, 2022, 49(1): 41-46. https://doi.org/10.11896/jsjkx.210900012
[9] 刘创, 熊德意.
多语言问答研究综述
Survey of Multilingual Question Answering
计算机科学, 2022, 49(1): 65-72. https://doi.org/10.11896/jsjkx.210900003
[10] 吴兰, 王涵, 李斌全.
基于自监督任务最优选择的无监督域自适应方法
Unsupervised Domain Adaptive Method Based on Optimal Selection of Self-supervised Tasks
计算机科学, 2021, 48(6A): 357-363. https://doi.org/10.11896/jsjkx.201000030
[11] 刘荣, 张宁.
图片分析在电子商务中的应用现状与未来趋势——基于图片视觉和内容特征的研究综述
Application Status and Future Trends of Photo Analysis in E-commerce:A Survey of Research Based on Photo Visual and Content Features
计算机科学, 2021, 48(6A): 137-142. https://doi.org/10.11896/jsjkx.210100017
[12] 刘小蝶.
基于边界感知的复杂名词短语的识别和转换研究
Recognition and Transformation for Complex Noun Phrases Based on Boundary Perception
计算机科学, 2021, 48(6A): 299-305. https://doi.org/10.11896/jsjkx.200500157
[13] 郭丹, 唐申庚, 洪日昌, 汪萌.
手语识别、翻译与生成综述
Review of Sign Language Recognition, Translation and Generation
计算机科学, 2021, 48(3): 60-70. https://doi.org/10.11896/jsjkx.210100227
[14] 马闯, 田青, 孙赫阳, 曹猛, 马廷淮.
基于双重权重偏差建模的无监督域适应
Unsupervised Domain Adaptation Based on Weighting Dual Biases
计算机科学, 2021, 48(2): 217-223. https://doi.org/10.11896/jsjkx.200700028
[15] 邹承明, 陈德.
高维大数据分析的无监督异常检测方法
Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis
计算机科学, 2021, 48(2): 121-127. https://doi.org/10.11896/jsjkx.191100141
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!