计算机科学 ›› 2018, Vol. 45 ›› Issue (12): 210-216.doi: 10.11896/j.issn.1002-137X.2018.12.035

• 图形图像与模式识别 • 上一篇    下一篇

基于L1与TV正则化的改进图像重建算法

徐敏达1, 李志华1,2   

  1. (江南大学物联网工程学院 江苏 无锡214122)1
    (物联网应用技术教育部工程研究中心 江苏 无锡214122)2
  • 收稿日期:2017-12-18 出版日期:2018-12-15 发布日期:2019-02-25
  • 作者简介:徐敏达(1993-),男,硕士生,CCF会员,主要研究方向为图像重建、层析成像,E-mail:xuminda0919@163.com;李志华(1969-),男,博士,教授,主要研究方向为计算机网络、云计算、层析成像等,E-mail:jswxzhli@aliyun.com(通信作者)。
  • 基金资助:
    本文受江苏省科技厅产学研前瞻基金项目(BY2013015-23)资助。

Improved Image Reconstruction Algorithm Based on L1-Norm and TV Regularization

XU Min-da1, LI Zhi-hua1,2   

  1. (School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)1
    (Engineering Research Center of IoT Technology Application,Ministry of Education,Wuxi,Jiangsu 214122,China)2
  • Received:2017-12-18 Online:2018-12-15 Published:2019-02-25

摘要: 针对不完全投影数据图像重建中出现伪影和噪点的问题,提出了L1与TV同时进行正则化的图像重建模型。基于该重建模型,通过将Bregman迭代和TV软阈值滤波相结合,进一步提出了一种图像重建算法。该算法首先将投影数据通过优化的Bregman迭代算法进行初步重建,然后使用TV软阈值滤波对改造的全变分模型进行二次重建,最后判断是否满足设定的收敛阈值,若满足则结束重建,输出重建图像,否则重复进行上述两步操作,直至迭代完成。实验采用不添加噪声的Shepp-Logan模型与添加噪声的Abdomen模型来验证算法的有效性,证明了所提出的算法在视觉上均优于ART,LSQR,LSQT-STF,BTV等典型的图像重建算法,同时通过多项评价指标对比表明所提出的算法有明显优势。实验结果表明,所提算法在图像重建中能够有效去除条形伪影并保护图像细节,同时具有良好的抗噪性。

关键词: Bregman迭代, L1正则化, TV软阈值, 图像迭代重建

Abstract: Concerning the streak artifacts and noise in the image reconstruction for incomplete projection data,this paper presented a image reconstruction model integrating L1 and TV regularization.Based on this model,this paper proposed a new image reconstruction method combining Bregman iteration and TV soft-thresholding filter.In the proposed method,the projection data are first applied to carry out preliminary reconstruction through Bregman iteration,and then the iterative results are used to minimize the TV model.At last,by repeating the above two steps,the reconstructed ima-ge can be obtained.To demonstrate its effectiveness,the Shepp-Logan model without noise and the Abdomen model with noise were employed to take experiments.The proposed algorithm not only has better visual effects,but also has more excellent performance compared with the existing algorithms such as ART,LSQR,L1 and BTV etc.Experimental results show that the proposed algorithm can well preserve image details and edges,and possesses good anti-noise capability,while eliminating streak artifacts effectively.

Key words: Bregman iteration, Image iteration reconstruction, L1-norm regularization, Total variation soft-thresholding

中图分类号: 

  • TP317.4
[1]ZHENG Q S,LV X X,YU Q T,et al.A new method of aperture synthetizing in digital holography[J].Chinese Physics B,2009,18(7):2764.
[2]HERMAN G T.Fundamentals of computerizedtomography:image reconstruction from projections[M].Springer Science & Business Media,2009.
[3]SIDKY E Y,KAO C M,PAN X.Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J].Journal of X-ray Science and Technology,2006,14(2):119-139.
[4]SHEPP L,LOGAN B.The Fourier Reconstruction of a Head Section[J].IEEE Transactions on Nuclear Science,1974,21(3):21-34.
[5]RUDIN L I,OSHER S,FATEMI E.Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena,1992,60(1-4):259-268.
[6]BECK A,TEBOULLE M.Fast gradient-based algorithms forconstrained total variation image denoising and deblurring problems[J].IEEE Transactions on Image Processing,2009,18(11):2419-2434.
[7]CANDÈS E J,WAKIN M B.An introduction to compressivesampling.IEEE Signal Processing Magazine,2008,25(2):21-30.
[8]RODRIGUEZ I V,SACCHI M,GU Y J.A compressive sensing framework for seismic source parameter estimation[J].Geophysical Journal International,2012,191(3):1226-1236.
[9]VOLZ R,CLOSE S.Inverse filtering of radar signals using compressed sensing with application to meteors [J].Radio Science,2012,47(6):RS0N05.
[10]HERMAN M A,STROHMER T.High-Resolution Radar viaCompressed Sensing[J].IEEE Transactions on Signal Proces-sing,2009,57(6):2275-2284.
[11]HALE E T,YIN W,ZHANG Y.A Fixed-Point Continuation Method for L1-Regularization with Application to Compressed Sensing:Technical Report CAAM TR07-07.Rice University,2007.
[12]DONOHO D L,TSAIG Y,DRORI I,et al.Sparse solution ofunderdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
[13]GUO X,LI F,NG M K.A fast l 1-TV algorithm for image restoration[J].SIAM Journal on Scientific Computing,2009,31(3):2322-2341.
[14]KANG H,GAO H X,HU Y M,et al.Reconstruction Algorithm Based on Bregman Iteration[J].Acta Automatica Sinica,2013,39(9):1570-1575.(in Chinese)
康慧,高红霞,胡跃明,等.基于Bregman迭代的CT图像重建算法[J].自动化学报,2013,39(9):1570-1575.
[15]YU H,WANG G.A soft-threshold filtering approach for reconstruction from a limited number of projections[J].Physics in Medicine and Biology,2010,55(13):3905-3916.
[16]FLORES L,VIDAL V,PARCERO E,et al.Application of amodified LSQR method for CT imaging reconstruction with low doses to patient∥International Congress on Image and Signal Processing,Biomedical Engineering and Informatics.IEEE,2017:1969-1974.
[17]LIN X Q.Research and Implementation of Adaptive Methodsfor Regularization Based Image Restoration[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)
林新潜.正则化图像复原中的自适应方法研究与实现[D].哈尔滨:哈尔滨工业大学,2013.
[18]ZHU Z Q,CAO S J,LU G Y.3D gravity inversion with bound constraint based on hyperparameter regularization[J].The Chinese Journal of Nonferrous Metals,2014,24(10):2601-2608.(in Chinese)
朱自强,曹书锦,鲁光银.基于混合正则化的重力场约束反演[J].中国有色金属学报,2014,24(10):2601-2608.
[19]YAN H,WANG S H,ZHOU Y G.Acoustic CT temperaturefield reconstruction based on adaptive regularization parameter selection[J].Chinese Journal of Scientific Instrument,2012,33(6):1301-1307.(in Chinese)
颜华,王善辉,周英钢.正则化参数自适应选取的声学CT温度场重建[J].仪器仪表学报,2012,33(26):1301-1307.
[20]DAUBECHIES I,DEFRISE M,DE MOL C.An iterativethresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics,2004,57(11):1413-1457.
[21]FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597.
[22]HUANG Y.Iterative Regularization Methods for Large-ScaleDiscrete Ill-Posed Problems[D].Beijing:Tsinghua University,2015.(in Chinese)
黄漪.大规模离散不适定问题迭代正则化方法的研究[D].北京:清华大学,2015.
[1] 徐艺菲, 熊淑华, 孙伟恒, 何小海, 陈洪刚.
基于非局部低秩和自适应量化约束先验的HEVC后处理算法
HEVC Post-processing Algorithm Based on Non-local Low-rank and Adaptive Quantization Constraint Prior
计算机科学, 2021, 48(5): 155-162. https://doi.org/10.11896/jsjkx.200800079
[2] 戚平.
一种求解稀疏信号重构的新算法
New Algorithm for Sparse Signals Reconstruction
计算机科学, 2013, 40(Z6): 93-95.
[3] 王影,王浩,俞奎,姚宏亮.
基于L1正则化的贝叶斯网络分类器
Bayesian Network Classifier Based on L1 Regularization
计算机科学, 2012, 39(1): 185-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!