摘要: 分析表明,KMSE模型准则中正则项的使用相当于引入了一个与核矩阵特征值直接相关的项以度量模型的泛化性能。根据矩阵特征值知识,可知核主分量分析实际上为KMSE模型应用过程中的一个中间步骤。此时,KMSE的作用表现为将样本在特征空间中的主分量映射为指示其类别的计算输出值。KMSE模型可看作是在特征空间的主分量分析基础上进一步实施特征变换的过程。本文全面阐述了KMSE模型与KFDA,LS-SVM,核主分量分析以及Bayesian判别函数间的理论关系。此外,通过分类实验测试了KMSE、核主分量分析与本文方法的性能
No related articles found! |
|