计算机科学 ›› 2010, Vol. 37 ›› Issue (2): 207-208.
• 人工智能 • 上一篇 下一篇
陈振学,刘成云,常发亮
出版日期:
发布日期:
基金资助:
CHEN Zhen-xue,LIU Cheng-yun,CHANG Fa-liang
Online:
Published:
摘要: 车型的识别问题是典型的目标识别问题,根据生物视觉与模式识别理论,对车辆车型的检测与识别进行了研究,提出了基于最小错误概率的特征显著性车型识别算法。该算法对车型的多个特征进行显著性比较,对较显著的特征赋予较大的权值,然后对多特征的识别结果进行融合处理。实验结果表明该算法对车型的识别具有较高的识别率。
关键词: 特征选择,生物视觉显著性,最小错误概率,车型识别,特征融合
Abstract: Vehicle type recognition is typical target recognition. According to biological vision and pattern recognition theory, the detection and recognition of vehicle type were researched. So, a novel method based on feature salience was presented to recognize vehicle type. Firstly, this algorithm extracts the multi-features of vehicle type and compares their salience. Then, the more salient feature was put larger power. Finally, the salient features were fused to recognize the vehicle type. The experimental results show that the algorithm has better identify rate.
Key words: Feature selection , Biological vision salience, Minimum probability of error, Vehicle type recognition, Feature fusion
陈振学,刘成云,常发亮. 基于生物视觉显著性的车辆车型识别[J]. 计算机科学, 2010, 37(2): 207-208. https://doi.org/
CHEN Zhen-xue,LIU Cheng-yun,CHANG Fa-liang. Vehicle Type Recognition Based on Biological Vision Salience[J]. Computer Science, 2010, 37(2): 207-208. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2010/V37/I2/207
Cited