计算机科学 ›› 2010, Vol. 37 ›› Issue (2): 221-224.

• 人工智能 • 上一篇    下一篇

基于多元特征的智能型生物识别模型

孙傲冰,张德贤,张苗   

  1. (河南工业大学信息科学与技术学院 郑州450001)
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受河南省创新型科技人才队伍建设工程项目(094200510009)资助。

Multiple Features Based Intelligent Biometrics Verification Model

SUN Ao-bing,ZHANG De-xian,ZHANG Miao   

  • Online:2018-12-01 Published:2018-12-01

摘要: 随着生物识别技术的不断成熟,各种成形产品和设备不断进入市场,为生物识别手段代替传统的身份鉴别方法提供了基础。基于单一生物特征的识别模型由于过度依赖于一种识别模式,难以抵御针对型的欺骗方式。通过分析人类智能识别的行为,提出了一种基于多元特征的智能型生物识别模型。该模型能够同时捕捉目标的多种生物特征,通过选择可信度最高的识别模式进行组合识别,防止了针对型欺骗;通过引入多特征的交叉索引模型,提高了系统对复杂生物特征的检索效率;通过系统记录的历史数据的参与,实现了一种目标特征变化敏感的识别方式,使系统在某一特征变化大于预设阂值时进行更高精度的生物识别。基于多元特征的生物识别模型增加了系统的欺骗代价,在保证系统的识别精度和效率的同时,降低了系统遭受恶意侵入的风险。

关键词: 生物识别,多元特征,欺骗代价

Abstract: With the development of biometrics verification technology, related devices and implements arc put into market, which make it possible that the devices replace traditional means. But current single feature based verification devices depend on one single means and own very low cheat cost,which can not defense the specific cheat mode. We analyzed the intelliegent verification of human beings and brought forward one multiple features based verification model. It can capture several biometric features at same time and select several features for veification according to need. The multiple features based cross index means can improve the search efficiency of complicated features. The joint of historic data in the model enables the system focuses on the changed features and provoke the verification with high precision.

Key words: Biometric verification, Multiple features, Cheat cost

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!