计算机科学 ›› 2010, Vol. 37 ›› Issue (5): 228-230.
• 人工智能 • 上一篇 下一篇
傅德胜,李仕强,王水平
出版日期:
发布日期:
FU De-sheng,LI Shi-qiang,WANG Shui-ping
Online:
Published:
摘要: 声调信息在汉语语音识别中具有非常重要的意义。采用支持向量机对连续汉语连续语音进行声调识别实验,首先采用基于Teager能量算子和过零率的两级判别策略对连续语音进行浊音段提取,然后建立了适合于支持向量机分类模型的等维声调特征向量。使用6个二类SVM模型对非特定人汉语普通话的4种声调进行分类识别,与BP神经网络相比,支持向量机具有更高的识别率。
关键词: 声调识别,基音频率,支持向量机
Abstract: Done is an essential component for word formation in Chinese languages. It plays a very important role in the transmission of information in speech communication. We looked at using support vector machines (SVMs) for automatic tone recognition in continuously spoken Mandarin. The voiced segments were detected based on Meager Energy Operation and ZCR. Compared with BP neural network, considerable improvement was achieved by adopting 6 binary-SVMs scheme in a speaker-independent Mandarin tone recognition system.
Key words: Tone recognition, Fundamental frequency, Support vector machine
傅德胜,李仕强,王水平. 支持向量机的汉语连续语音声调识别方法[J]. 计算机科学, 2010, 37(5): 228-230. https://doi.org/
FU De-sheng,LI Shi-qiang,WANG Shui-ping. Tone Recognition Based on Support Vector Machine in Continuous Mandarin Chinese[J]. Computer Science, 2010, 37(5): 228-230. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2010/V37/I5/228
Cited