计算机科学 ›› 2010, Vol. 37 ›› Issue (9): 249-251.
• 人工智能 • 上一篇 下一篇
秦玉灵,孔宪仁,罗文波
出版日期:
发布日期:
基金资助:
QIN Yu-ling,KONG Xian-ren, LUO Wen-bo
Online:
Published:
摘要: 粒子群算法参数少,简便易行,具有较好的全局搜索能力和计算效率,在优化等领域得到了广泛应用,但它易于陷入局部极值,因此需要进行改进以增强其优化性能。修正了基本粒子群算法中的速度公式权重因子和最优位置,提出了形式简单且搜索效率高的自适应二次粒子群算法,并应用于五层钢架结构模型修正,修正结果证实了算法的有效性和优越性。
关键词: 粒子群算法,全局搜索能力,局部极值,自适应二次粒子群算法,模型修正
Abstract: Particle swarm optimization(PSO) algorithm which has less parameters is widely used in optimisation area for its better global search ability and calculation efficiency, it's necessary to change some parameters of the formula to improve its search ability and avoid getting into local optimum. The inertia factor and optimal position in the velocity fomina of PSO were updated and the self-adaptive quadratic particle swarm optimization(SAQPSO) algorithm with simple form and high search efficiency was proposed, model updating of the five-layer steel frame structure confirms the validity and superiority of SAQPSO.
Key words: Particle swarm optimization(PSO) algorithm, Global search ability, Local optimum, Self-adaptive quadratic particle swarm optimi}ation(SAQPSO) algorithm,Modc1 updating
秦玉灵,孔宪仁,罗文波. 自适应二次粒子群算法钢架模型修正[J]. 计算机科学, 2010, 37(9): 249-251. https://doi.org/
QIN Yu-ling,KONG Xian-ren, LUO Wen-bo. Steel Frame Model Updating Based on Self-adaptive Quadratic Particle Swarm Optimization Algorithm[J]. Computer Science, 2010, 37(9): 249-251. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2010/V37/I9/249
Cited