计算机科学 ›› 2011, Vol. 38 ›› Issue (12): 242-246.

• 人工智能 • 上一篇    下一篇

基于互补模型的汉语韵律间断自动检测

倪崇嘉,刘文举,徐波   

  1. (山东财政学院统计与数理学院 济南250014);(中国科学院自动化研究所模式识别国家重点实验室 北京100190)
  • 出版日期:2018-12-01 发布日期:2018-12-01

Mandarin Prosodic Break Automatic Detection Based on Complementary Model

  • Online:2018-12-01 Published:2018-12-01

摘要: 自动韵律间断检测和标注对语音理解和语音合成有十分重要的作用。提出了利用声学、词典和语法相关特征的互补模型方法检测汉语韵律间断。该方法具有下列优点:(1)摒弃了声学相关特征和词典、语法相关特征的独立性假设;(2)互补模型方法不仅在特征层上利用当前音节的上下文信息,而且在模型层次上利用了当前音节的上下文信息。在ASCCD语料库上验证了该方法能够获得90.34%的韵律间断的检测准确率,较基线系统有 6.09%的提高。

关键词: 韵律间断,互补模型,Boosting分类回归树,条件随机场,神经网络,支持向量机

Abstract: Automatic prosodic break detection and annotation arc important for both speech understanding and natural speech synthesis. We developed complementary model to detect Mandarin prosodic break by using acoustic, lexical and syntactic evidence. Our proposed method has the following advantages: (1) We do not adopt the independent assumption between the acoustic features and the lexical and syntactic features. (2) The complementary models not only in the features of the current syllable but also in the contextual features of the current syllable at model level realizes the complementarities by taking the advantages of each model. We verified our proposed method in a speech corpus of Chinese dis- course(ASCCD),where 90.34% prosodic break detection precision rate can be achieved and 6.09% is improved than the baseline.

Key words: Prosodic break, Complementary model, Boosting classification and regression trec(CART) , Conditional random fields(CRFs) , Neural network(NN) , Support vector machine(SVM)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!