计算机科学 ›› 2011, Vol. 38 ›› Issue (12): 274-277.

• 图形图像 • 上一篇    下一篇

基于direct LDA的高光谱遥感影像地物分类

刘敬   

  1. (西安邮电学院电子工程学院 西安710121)
  • 出版日期:2018-12-01 发布日期:2018-12-01

Hyperspectral Remote Sensing Image Terrain Classification Based on Direct LDA

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对高光谱遥感影像的降维问题,提出一种高光谱影像地物分类方法:direct LDA子空间法。先采用直接线性判别分析(direct linear discriminant analysis, direct LDA)进行特征提取,然后在特征子空间中采用最短距离分类器进行地物分类。机载可见光/红外成像光谱仪(airborne visible/infrared imaging spectrometer,AVIRIS)的高光谱影像识别结果表明,该方法相比LDA子空间法和原空间法,可显著降低数据维数,提高识别率。

关键词: 地物分类,特征子空间,特征提取,高光谱影像

Abstract: Hyperspectral remote sensing image has the problem of high dimensionahty. A new hyperspectral image terrain classification method, i. c.,direct LDA subspace method, was presented. Firstly, direct linear discriminant analysis(direct LDA) was used to extract features in original high dimensional hyperspectral space, and then shortest distance classifier was used to perform terrain classification in the feature subspace. Recognition results based on airborne visible/infrared imaging spectrometer(AVIRIS) hyperspectral image show that the presented method can remarkably reduce data dimensionality and improve recognition efficiency.

Key words: Terrain classification,Feature subspace,Fcature extraction, Hyperspectral image

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!