计算机科学 ›› 2012, Vol. 39 ›› Issue (11): 149-152.

• 数据库与数据挖掘 • 上一篇    下一篇

基于MapReduce自适应参数的粗糙K-modes算法研究

杨阳 张为群 刘枫 黄仁杰   

  1. (西南大学计算机与信息科学学院 重庆 400715) (重庆市智能仪表及控制装备工程技术研究中心 重庆 400715)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Research on Rough K-modes Algorithm with Adaptive Parameters Based on MapReduce

  • Online:2018-11-16 Published:2018-11-16

摘要: 粗糙K-mocks聚类算法需要根据经验为w2 , wu和。3个参数设定其固定值,聚类效果不稳定,容易受到噪声 干扰。提出一种基于MapReduce自适应参数的粗糙K-modes算法,它根据聚类不同阶段的特点自动调整参数值,优 化聚类效果。在此基础上,对自适应参数的粗糙K-modes算法进行MapRcducc并行化设计,以提高算法的运行效率。 实验证明,提出的自适应参数的粗糙K-modes算法聚类效果稳定,通过对算法的并行设计提高了算法对大规模数据 的聚类分析性能。

关键词: 粗糙K-modes,自适应参数,MapRcducc并行化

Abstract: In the traditional rough K-modes algorithm, three important parameters, w} , wk and。,are set fixedly,making the clustering result unstable and interfered easily by noise. We proposed a rough K-modes algorithm based on MapRe- duce adaptive parameters,which adjusts parameters depending on the characteristics of different clustering stages,opti- mining the clustering result In addition, we designed the rough K-modes algorithm with adaptive parameters that can be used in MapReduce to improve the efficiency of the algorithm and performance of clustering largcscale data. Finally, this algorithm's validity is proved by experiments.

Key words: Rough K-modes,Adaptivc paramctcrs,MapReduce validity

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!