计算机科学 ›› 2012, Vol. 39 ›› Issue (11): 277-279.

• 图形图像 • 上一篇    下一篇

基于Curvelet变换的荻草细胞图像分割

王娴,周宇,云挺,邓玉和   

  1. (南京林业大学信息科学技术学院 南京210037);(南京林业大学木材工业学院 南京210037)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Miscanthus Sacchariflorus Cells Image Segmentation Based on Curvelet Transformation

  • Online:2018-11-16 Published:2018-11-16

摘要: 利用快速离散Curvelet变换,对Curvelet域中各层子带采用结合灰度共生矩阵的方法来提取特征向量,选用 支持向量机方法对获草细胞图像进行纹理分割,进而获取获草细胞中的纤维素向量数据。分割实验结果表明:采用 “角二阶矩”、“对比度”、“相关性”和“嫡”这四维统计量计算图像变换域中子带系数共生矩阵是有效的,据此对获草细 胞图像进行纹理分割是可行的;与基于灰度共生矩阵的获草图像分割方法的分割结果相比,新方法缩短了运行时间, 分割准确率也得到了提高。

关键词: 获草,纤维素,Curvclct,灰度共生矩阵,支持向量机

Abstract: In order to extract the cellulose of Miscanthus sacchariflorus cells, the fast discrete curvelet transform combi- ning with gray level co-occurrence matrix was applied to extract the image feature vectors, and then SVM was used to segment the images. Experiments arc carried out with this method, and the results show that it is effective to compute the gray level co-occeurrence matrix of sub-band coefficient with”Angle second order moment",”contrast",”correla- tion" and”entropy" as the four statistics in image transform domain. According to this, texture segmentation on Miscanthus sacchariflorus cells is feasible. And compared with the texture segmentation method based on gray level co- occurrence matrix(ULCM) , the new method shortens the running time and makes the segmentation accuracy improved.

Key words: Miscanthus sacchariflorus, Ccllulosc, Curvclct, GLCM, SVM

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!