计算机科学 ›› 2012, Vol. 39 ›› Issue (11): 83-85.

• 计算机网络与信息安全 • 上一篇    下一篇

基于人工鱼群和微粒群混合算法的WSN节点部署策略

孙伟 朱正礼 郑磊 侯迎坤   

  1. (南京林业大学信息科学技术学院 南京 210037) (南京理工大学计算机科学与技术学院 南京 210094) (泰山学院信息科学技术学院 泰安 271021)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Deployment Strategy of Wireless Sensor Network Nodes Based on AFSA-PSO Hybrid Algorithm

  • Online:2018-11-16 Published:2018-11-16

摘要: 将无线传感器网络节点分布部署问题形式化为一个组合优化问题,以网络覆盖率为目标函数。针对该模型 提出基于人工鱼群与微粒群的混合算法的无线传感器网络节点部署优化策略。微粒群算法搜索效率高,而人工鱼群 算法进行搜索时有很好的全局性。AF SA-POS算法将这两种算法相结合,局部搜索速度快,而且有效地解决了标准 PS<)算法中的粒子“早熟”问题。最后使用MA"I'LAI3进行了实验,结果表明提出的算法减少了迭代次数,并且提高了 网络覆盖率,相对于人工鱼群算法和微粒群算法来说能取得更好的效果。

关键词: 无线传感器网络,微粒群算法,人工鱼群算法,覆盖策略优化

Abstract: The deployment of sensor nodes was formalized as a combinatorial optimization problem, and the network coverage was used as the objective function. For the model this paper proposed a hybrid algorithm of artificial fish swarm algorithm(AFSA) and particle swarm optimization(PSO) by combining the advantages of the two algorithms. Particle swarm optimization can achieve the effective local search, and artificial fish swarm algorithm can enhance the a- bility of global optimization. The AFSA-PSO hybrid algorithm proposed in this paper has the advantages of both. The simulation results show that AFSA-PSO hybrid algorithm is superior to the artificial fish swarm algorithm and particle swarm optimization algorithm, can effectively improve network coverage with fewer iterations.

Key words: Wireless sensor networks, PSO, AFSA, Optimization

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!