计算机科学 ›› 2013, Vol. 40 ›› Issue (10): 257-260.

• 人工智能 • 上一篇    下一篇

基于核Fisher判别的分类器算法及其在语种识别中的应用研究

李晋徽,杨俊安,项要杰   

  1. 电子工程学院 合肥230037 电子制约技术安徽省重点实验室 合肥230037;电子工程学院 合肥230037 电子制约技术安徽省重点实验室 合肥230037;电子工程学院 合肥230037 电子制约技术安徽省重点实验室 合肥230037
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金(60872113)资助

Novel Classifier Algorithm Based on Kernel Fisher Discriminant and its Application in Language Recognition

LI Jin-hui,YANG Jun-an and XIANG Yao-jie   

  • Online:2018-11-16 Published:2018-11-16

摘要: GMM与SVM的建模和识别性能具有较好的互补性,因此GMM-SVM在语种识别中得到广泛使用,以其为基础的GMM-MMI-SVM已成为语种识别的主流研究方法。但是SVM在判别时仅仅使用了训练样本中的一些特殊样本即支持向量,并没有使用全部样本,从而影响了系统识别性能的进一步提高。针对上述问题,提出一种基于核Fisher判别的分类算法——GMM-MMI-KFD。该算法的核心思想是用核Fisher准则(KFD)替代SVM分类准则,从语音片段中提取出特征向量序列,分别通过GMM-MMI分类器与GMM-KFD分类器进行判决打分。相对SVM,KFD更注重语音数据非线性分布的特点,并且将样本向高维空间H上投影后可以最大限度地增大类间距,减小类内距。实验数据表明,GMM-MMI-KFD方法在语种识别中具有更高的识别率。

关键词: 语种识别,核Fisher判别,分类器融合,SVM,GMM-MMI

Abstract: GMM and SVM have a good complementation on the modeling and recognition performance.Therefore,GMM-MMI-SVM has become a mainstream research method in language recognition.However,SVM only employs some special samples in the training samples,i.e.support vector,but doesn’t use all samples.This affects further improvement of system’s recognition performance.In order to solve this problem,an novel classification algorithm based on Kernel Fisher Discriminant(KFD) was proposed in this paper,called GMM-MMI-KFD.The core idea is the substitution of SVM with KFD,Extracting eigenvector sequence from voice segment,and then inputing them into GMM-MMI and GMM-KFD classifiers respectively,which judge them.Compared to SVM,KFD gets more emphasis on the characteristic of nonlinear distribution of voice data.Meanwhile,it can maximize between-class space and minimize within-class space after the projection of samples onto high-dimensional space.The experimental data shows that the GMM-MMI-KFD Classifier has higher recognition rate in language recognition.

Key words: Language recognition,Kernel fisher discriminant,Classifier fusion,SVM,GMM-MMI

[1] Campbell W M,Campbell J P,Reynolds D A,et al.Phonetic Speaker Recognition with Support Vector Machines[C]∥Advances in Neural Information Processing Systems.MIT Press,Cambridge,MA,2004
[2] Richardson F S,Campbell W M.Language Recognition withDiscriminative Keyword Selection [C]∥Proc.of ICASSP 2008.Las Vegas,Nevada,U.S.A,2008:4145-4148
[3] Campbell W M,Richardson F,Reynolds D A.Language recognition with word lattices and support vector machines[C]∥Proc of ICASSP.2006,11
[4] 金恬,宋彦,戴礼荣.一种改进的PRSVM语种识别方法[J].小型微型计算机系统,2011,32(5):1017-1020
[5] Revathi A,Venkataramani Y.Speaker independent continuousspeech and isolated digit recognition using VQ and HMM[C]∥International Conference on Communications and Signal Processing.Washington,DC:IEEE Computer Society,2011:198-202
[6] Zulfiqar A,Muhammad A,Martinez-Enriquez A M,et al.Text-Independent Speaker Identification Using VQ-HMM Model Based Multiple Classifier System[J].Lecture Notes in Computer Science,2010,6438:116-125
[7] 程杨.基于多分类器的少数民族语种识别研究[D].昆明:云南大学,2012
[8] Torres-Carrasquillo P,Singer E,Gleason T,et al.The MITLLNISTLRE 2009Language Recognition System[C]∥IEEE International Conference on Acoustics,Speech,and Signal Proces-sing.Dallas,T X,2010:4994-4997
[9] Campbell W.A Covariance Kernel For SVM Language Recognition[C]∥IEEE International Conference on Acoustics,Speech,and Signal Processing.2008
[10] Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[C]∥Proceedings of the IEEE International Workshop on Neural Networks for Signal Processing.Madison,USA,1999:41-48
[11] Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404
[12] 徐颖.语种识别声学建模方法研究[D].北京:中国科技大学,2011:13-19
[13] 付强.基于高斯混合模型的语种识别的研究[D].北京:中国科技大学,2009:33-36
[14] The 2007NIST Language Recognition Evaluation Plan.http://www.itl.nist.gov/iad/mig//tests/lre/2007/LRE07Eval-Plan-v8b.pdf

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!