摘要: 实现对Web服务的自动聚类,是提高Web服务发现速度的有效方式之一。针对常用聚类算法在实现服务聚类时需要获取网内所有服务或通过服务训练集来发掘领域内服务特征,不适用于动态服务环境的问题,提出了服务能力的概念,并给出了服务能力描述及计算的方法。借助本体技术,提出了一种基于服务能力的聚类算法。无需先验知识或服务间相似度的比较,该算法可将服务能力及功能相似的服务聚类在一起。在此基础之上,提出了一种服务预检索算法。理论分析及仿真结果表明,聚类算法可有效地反映领域内服务基于功能的聚类特征,预检索算法可有效地滤除无关服务,提高服务检索效率。
[1] Gao Hao,Yan Jun,Mu Yi.Web Service Selection based on Similarity Evaluation[C]∥IEEE International Conference on Servi-ces Computing.2011:322-329 [2] 张莹,黄厚宽,杨冬,等.基于Chord的带有QoS的语义Web服务发现方法研究[J].电子与信息学报,2009,31(9):711-714 [3] 陈蕾,杨庚,张迎周,等.基于核Batch SOM聚类优化的语义Web服务发现机制研究[J].电子与信息学报,2011,33(6):1307-1312 [4] Chen Lei,Yang Geng,Zhang Ying-zhou,et al.Web ServicesClustering Using SOM based on Kernel Cosine Similarity Measu-re[C]∥2010 2nd International Conference on Information Sicence and Engineering.2010:846-850 [5] Cassar G,Barnaghi P,Moessner K.A Probabilistic Latent Factor Approach to Service Ranking[C]∥2011IEEE International Conference on Intelligent Computer Communication and Processing.2011:103-109 [6] Xie Ling-li,Chen Fu-zan,Kou Ji-song.Ontology-Based Semantic Web Services Clustering[C]∥2011IEEE International Conferen-ce on Industrial Engineering and Engineering Management.2011:2075-2079 [7] Gholamzadeh N,Taghiyareh F.Ontology-based Fuzzy Web Ser-vices Clustering[C]∥International Symposium on Telecommunications.2011:721-725 [8] Skoutas D,Sacharidis D,Simitsis A,et al.Ranking and Clustering Web Services Using Multicriteria Dominance Relationships[J].IEEE Transactions on Services Computing,2010,3(3):163-176 [9] Skoutas D,Sacharidis D,Simitsis A,et al.Top-k Dominant Web Services Under Multi-Criteria Matching[C]∥Proceedings of the 12th International Conference on Extending Technology:Advances in Database Technology.2009:898-909 [10] Paliwal A V,Shafiq B,Vaidya J,et al.Semantics-Based Automated Service Discovery[J].IEEE Transactions on Services Computing,2012,5(2):260-274 |
No related articles found! |
|