计算机科学 ›› 2013, Vol. 40 ›› Issue (7): 187-191.

• 人工智能 • 上一篇    下一篇

基于最小包含球的领域迁移学习新方法

顾鑫,王士同   

  1. 江南大学数字媒体学院 无锡214122;江南大学数字媒体学院 无锡214122
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金项目(60903100,7)资助

Novel Domain Transfer Learning Approach Using Minimum Enclosing Ball

GU Xin and WANG Shi-tong   

  • Online:2018-11-16 Published:2018-11-16

摘要: 传统机器学习方法认为不同的学习任务彼此无关,但事实上不同的学习任务常常相互关联。迁移学习试图利用任务之间的联系以及过去的学习经验加速对于新任务的学习。将最小包含球(Minimum Enclosing Ball,MEB)算法与Parzen Windows概率估计公式相结合,提出了一种新的迁移学习算法MEBTL((Minimum Enclosing Ball Transfer Learning)。该算法同时结合CVM(Core Vector Machines)理论提出了CCMEBTL(Center Constrained Minimum Enclosing Ball Transfer Learning)算法,其可以在不同领域之间完成大样本的迁移学习。作为验证,将其应用在WIFI数据的室内定位、人脸识别检测上,并取得了较好的效果。

关键词: 中心约束型最小包含球,数据校正,迁移学习,领域自适应 中图法分类号TP391文献标识码A

Abstract: Traditional machine learning methods assume that different learning tasks have nothing with each other,but in fact there are some links between them.Transfer learning attempts to use these links and even past learning experiences between different tasks to accelerate the learning for new tasks.This paper integrated the MEB (Minimum enclosing ball algorithm together with Parzen windows probability estimation to develop a new transfer learning method named MEBTL (Minimum enclosing ball Transfer learning).We also used CVM (Core Vector Machines) theory to develop its fast version of the proposed algorithm CCMEBTL for large domain adaptation.The experimental results about “WIFI indoor positioning” and “face detection” indicate the effectiveness of the proposed algorithm.

Key words: CCMEB,Data correction,Transfer learning,Domain adaptation

[1] Dai W,Yang Q,Xue G,et al.Boostimg for transerfer learning[C]∥Proceedings of the 24th International Conference on Machine Learning.USA Corvasllis:ACM,2007:193-200
[2] Pan S J,Yang Q.A survey on transfer learning[J].IEEE Transa-ctions on Knowledge and Data Engineering,2009,2(10):1345-1359
[3] Blitzer J,McDonald R,Percira F.Domain adaptation with structural correspondence learning[C]∥Processings of the 2006Conference on Empirical Methods in Natural Language Proces-sing.PA USA:SIAM,2006:120-128
[4] Hal Daum’e III.Daniel Mareu Domain adaptation for statistical classifiers[J].Journal of Artificial Intelligence Research,2006,6(4):101-126
[5] Blitzer J,Crammer K,Kulesza A,et al.Learning bounds for domain adaptation[C]∥Proceedings of the 21st Annual Confe-rence on Neural Information Processing Systems.Cambridge,MA:MIT,2008:129-136
[6] Dai W,Xue G,Yang Q,et al.Co-clustering based classification for out-of-domain documents[C]∥Proceedings of 13th ACM SIGKDD.New York:ACM,2007:210-219
[7] Tax D M J,Duin R P W.Support vector domain description[J].Pattern Recognition Letters,1999,0(11):1191-1199
[8] Tsang I,Kwok J,Zurada J.Generlized core vector machines [J].IEEE Transactions on Neural Networks,2006,7(5):1126-1139
[9] Tsang I,Kwok J,Cheung P.Core vector machines:Fast SVM training on very large data sets [J].Journal of Machine Learning Research,2005,6(4):363-392
[10] Fang S-H,Lin T-N.Indoor location system based on discriminant-adaptive neural network in IEEE 802.11environments[J].IEEE Transactions on Neural Networks,2008,19(11):1973-1978
[11] Yang Q,Pan S J,Zheng V W.Estimating location using Wi-Fi[J].Intelligent Systems,IEEE,2008,3(1):8-13
[12] Satpal S,Sarawagi S.Domain Adaptation of Conditional Probability Models via Feature Subsetting [C]∥Proceedings of PKDD.Heidelberg:Springer-Verlag Press,2007,2:224-235
[13] Pan S J,Kwok J T,Yang Q.Transfer learning via dimensionality reduction[C]∥Proc.23rd Assoc.for the Advancement of Artificial Intelligence (AAAI) Conf.Artificial Intelligence.Chicago,IL,July 2008:677-682
[14] Pan S J,Tsang I W,Kwok J T,et al.Domain Adaptation viaTransfer Component Analysis [J].IEEE Transactions on Neural Networks,2011,22(2):199-210
[15] Osuna E,Freund R,Giroal F.Training support vector machines:an application to face diction[C]∥Prceedings of IEEE Confe-rence on Computer Vision and Pattern Recognition.San Juan,1997:130-136

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!