计算机科学 ›› 2013, Vol. 40 ›› Issue (7): 182-186.

• 人工智能 • 上一篇    下一篇

一种完备数据流的不确定数据择优算法

徐雪松,徐佳,郭立玮,张宏,周金海   

  1. 南京中医药大学信息技术学院 南京210046;南京邮电大学计算机学院 南京210003;南京中医药大学中医药研究院 南京210046;南京理工大学计算机科学与技术学院 南京210094;南京中医药大学信息技术学院 南京210046
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金资助

Algorithm for Choosing Optimal Uncertain Data of Complete Data Streams

XU Xue-song,XU Jia,GUO Li-wei,ZHANG Hong and ZHOU Jin-hai   

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对射频识别(RFID)数据与上层应用需求之间存在的信息鸿沟及其需要实时处理的特征,提出了一种完备数据流的不确定数据择优算法。分析了常规粒子滤波方法存在的不足之处,采用基于熵的方法推导属性最优权重,并利用可能度矩阵选择最佳粒子,从不确定RFID数据流上有效捕获对象的当前状态。算法的优化结果使得采样集向后验概率密度分布取值较大的区域运动,从而提高了算法计算效率并且显著地减少了精确定位所需的粒子数。最后,通过实例表明了该方法能够有效度量RFID数据中蕴含的不确定性。

关键词: 物联网,射频识别数据流,优化估计,粒子滤波 中图法分类号TP311文献标识码A

Abstract: To address the information gap between RFID data and the requirements of upstream applications,the chara-cter of real time of sensor data,an algorithm for choosing the optimal uncertain data of complete data streams was proposed.The drawbacks of generic particle filter were analyzed.Then an entropy-based method was adopted to estimate the most likely attribute weight for each object,by using possibility degree matrix to select optimal particles,to efficiently capture the possible locations and containment for tagged objects.The performance of the generic particle filter is improved.In this method,though particle optimization,particles are moved to the regions where they have larger values of posterior density function.The experimental results show the accuracy and efficiency and the number of particles needed for accurate location are reduced dramatically.Finally,a numerical example was given to show the feasibility and effectiveness in terms of measurement of underlying uncertainties over RFID data.

Key words: Internet of things,Radio frequency identification data streams,Optimal estimation,Particle filter

[1] 聂艳明,李战怀,陈群.针对不确定射频识别数据流的改进概率推导方法[J].西安交通大学学报,2011,45(12):45-52
[2] Sarma A D,Theobald M,Widom J.Exploiting lineage for confidence computation in uncertain and probabilistic databases[A]∥Proceedings of the 24th IEEE International Conference on Data Engineering[C].Washington,DC:IEEE Computer Society Cancun,2008:1023-1032
[3] Benjelloun O,Sarma A,Halevy A,et al.Uldbs:Databases with uncertainty and lineage[A]∥Proceeding of the 32th International Conferance on Very Large Data Base ( VLDB06) [C].Seoul:VLDB Endowment,2006:953-964
[4] Sarma A D,Theobald M,Widom J.Exploiting lineage for confidence computation in uncertain and probabilistic databases[A]∥Proceedings of the 24th IEEE International Conference on Data Engineering[C].Washington,DC:IEEE Compu ter Society Cancun,2008:1023-1032
[5] 王永利,钱江波,等.一种REID数据不确定性的自适应度量算法[J].电子学报,2011,9(3):579-584
[6] Christopher Re,Letchner J,Balazinksa M,et al.Event queries on correlated probabilistic streams[A]∥Proceedings of the 2008ACM SIGMOD International Conference on Management of Data[C].New York,NY:ACM,2008:715-728
[7] Fang Zheng,Tong Guo-feng,Xu Xin-he.Particle swarm optimized particle filter[J].Control and Decision,2007,22(3):273-277
[8] Shawn R J,Minos G,Michael J F.Adaptive cleaning for RFID data streams[A]∥Proceeding s of the 32nd International Conference on Very Large Data Bases( VLD B06) [C].Seoul:VLDB Endowment,2006:167-174
[9] Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/ non gaussian bayesian state estimation[J].IEE Procee-dings F In Radar and Signal Processing,2002,140(2):107-113
[10] Wu Z B,Chen Y H.The maximizing deviation method for group multiple attribute decision making under linguistic environment[J].Fuzzy Sets and Systems,2007,158(14):1608-1617

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!