摘要: 核方法的效果依赖于所使用的核,因此核的选择和其参数的确定是至关重要的。从特定的数据中学习核需要核度量方法评价核的质量。核排列度量核与学习任务的一致性,因为它具有高效性和有效性,是目前应用最为广泛的核度量方法。然而,有研究表明,核排列仅是最优核函数的充分非必要条件。其主要原因是核排列在特征空间中不具有线性变换不变性。提出了一种新的核度量方法用于核选择,称其为核距离排列。该方法能够克服核排列的局限性,并且同样具有高效性和简单的形式。对比实验表明,该方法能够有效地对核进行度量。
[1] Schlkopf B,Smola A.Learning with Kernels [M].MIT Press,Cambridge,Massachusetts,2002 [2] Gnen M,Alpaydin E.Multiple kernel learning algorithms [J].Journal of Machine Learning Research,2011,12:2211-2268 [3] Girolami M,Rogers S.Hierarchic bayesian models for kernellearning [C]∥Proceedings of the 22nd internatinoal conference on machine learning.Bonn,Germany,Springer Verlag,August 2005:241-248 [4] Cheng S-O,Smola A J,Williamson R C.Learning the kernelwith hyperkernels [J].Journal of Machine Learning Research,2005,6:1043-1071 [5] Cristianini N,Shawe-Taylor J,Elisseeff A,et al.On kernel-target alignment [J].Advances in Neural Information Processing Systems,2001,4:367-373 [6] Baram Y.Learning by kernel polarization [J].Neural Computation,2005,17:1264-1275 [7] Wang Ting-hua,Tian Sheng-feng,Huang Hou-kuan,et al.Lear-ning by local kernel polariz [J].Neurocomputing,2009,72:3077-3084 [8] Nguyen C H,Ho Tu-bao.An efficient kernel matrix evaluation measure [J].Pattern Recognition,2008,1:3366-3372 [9] Chudzian P.Evaluation measures for kernel optimization [J].Pattern Recognition Letters,2012,33:1108-1116 [10] Schlkopf B.The kernel trick for distance [J].Advances in Neural Information Processing Systems,2001,13:301-307 [11] Wang Ting-hua,Zhao Dong-yan, Tian Sheng-feng.An overview of kernel alignment and its applications [J].Artificial Intelligence Review,November 2012 [12] Camargo J E,Gonz′alez F A.A multi-class kernel aligmentmethod for image collection summa- rization [C]∥Proceedings of the 14th Iberoamerican Conference on Pattern Recognition:Progress in Pattern Recognition,Image Analysis,Computer Vision,and Applications.Guadalajara,Mexico,Springer Verlag,November 2009:545-552 [13] Igel C,Glasmachers T,Mersch B,et al.Gradientbased optimization of kernel- target aligment for sequence kernels applied to bacterial gene start detections [J].IEEE Transactions on Computational Biology and Bioinformatics,2007,4(2):216-226 [14] Wong W W L,Burkowski F J.Using kernel alignment to select features of molecular descriptors in a qsar study [J].IEEE Transactions on Computational Biology and Bioinformatics,2011,8(5):1373-1384 [15] Ramona M,Richard G,David B.Multiclass feature selectionwith kernel gram matrix based criteria [J].IEEE transactions on neural networks and learning systems,2012,23(10):1611-1623 [16] Hofmann T,Scholkopf B,Smola A J.Kernel methods in machinelearning [J].The Annals of Statistics,2008,36(3):1171-1220 [17] Lesot M-J,Rifqi M.Similarity measures for binary and numerucal data:a survey [J].International Journal of Knowledge Engineering and Soft Data Paradigms,2009,1(1):63-84 |
No related articles found! |
|