计算机科学 ›› 2014, Vol. 41 ›› Issue (4): 223-229.

• 人工智能 • 上一篇    下一篇

基于ALCQ(D)的CBR事例表示及相似性度量

孙晋永,古天龙,常亮,马林威   

  1. 西安电子科技大学计算机学院 西安710071;桂林电子科技大学广西可信软件重点实验室 桂林541004;桂林电子科技大学广西可信软件重点实验室 桂林541004;桂林电子科技大学广西可信软件重点实验室 桂林541004
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(60963010,9,61262030,0),广西自然科学基金(2012GXNSFBA053169)资助

Research on CBR’s Case Representation and Similarity Measure Based on ALCQ(D)

SUN Jin-yong,GU Tian-long,CHANG Liang and MA Lin-wei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 针对目前用于CBR事例表示的描述逻辑,如EL、ALC、ALCNR等缺少定性数量约束和有型域约束的问题,将具有定性数量约束和有型域构子的描述逻辑ALCQ(D)应用于CBR中。首先使用ALCQ(D)概念表示有定性数量约束、具体数据类型和数据值约束需求的CBR事例,并对之索引。研究两种主要的具体数据类型:数值类型和符号类型。然后定义ALCQ(D)范式来规范事例的索引表示,最后给出事例相似性度量方法。该度量方法先对事例索引的各个部分进行相似性度量,然后对度量结果进行加权求和得到最终相似性。实验结果表明,ALCQ(D)可以更准确地表示事例,事例相似性度量方法可以更贴切地度量事例的相似性,这对提高事例检索的速度和准确性以及提高CBR系统的效率具有重要意义。

关键词: 基于事例推理,描述逻辑,事例表示,事例检索,相似性

Abstract: Focused on the lack of qualified number restrictions and concrete domains restrictions in DLs such as EL,ALC,ALCNR that have been used in CBR’s case representation,ALCQ(D) was used with which qualified number restrictions and concrete domains constructor were equipped.First,ALCQ(D) concepts were used to represent and index cases with the requirements of qualified number restrictions,concrete data types and numerical restrictions.Two concrete domain types which are numerical data type and symbolic data type were studied.Second,the normal form of ALCQ(D) was defined to normalize case representations in the form of indexes.Finally the measure method for case similarity was presented,which measures similarities of all parts of the case representations,then weights and summates gained similarities.Experimental results show that ALCQ(D) represents cases more accurately and the measure method for case similarity measures the similarity between cases more adequately.It is very important for increasing the speed of case retrieval,for improving the accuracy of case retrieval,and for improving the efficiency of the CBR system.

Key words: Case-based reasoning(CBR),Description logic(DL),Case representation,Case retrieval,Similarity

[1] Koloder J.An introduction to case based reasoning[J].Artificial Intelligence Review,1992,6(1):3-44
[2] Aamodt A,Plaza E.Case-based reasoning:Foundational issues,methodological variations,and system approaches[J].AI Communications,1994,7(1):39-59
[3] Bartsch-Sporl B,Lenz M,Hubne A.Case based reasoning:survey and future directions[C]∥Lecture Notes in Computer Science 1570.Springer,1999:67-89
[4] Lopez De Mantaras R,McSherry D,Bridge D,et al.Retrieval,reuse,revision and retention in case-based reasoning[J].Know-ledge Engineering Review,2005,20(3):215-240
[5] Bergman R,Kolodner J,Plaza E.Representation in Case-Based Reasoning[J].Knowledge Engineering Review,2005,0(3):209-213
[6] Koehler J.An application of terminological logics to case basedreasoning[C]∥Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning.San Francisco,1994:351-362
[7] Koehler J.Planning from second principles[J].Artificial Intelligence,1996,87(1/2):145-186
[8] Kamp G.Using description logics for knowledge intensive case-based reasoning[C]∥Lecture Notes in Computer Science 1168.Springer,1996:204-218
[9] Salotti S,Ventos V.Study and formalization of a case based rea-soning system using a description logic[C]∥Lecture Notes in Computers Science 1488.Springer,1998:286-297
[10] d’Amato C,Fanizzi N,Esposito F.A semantic similarity mea-sure for expressive description logics[C]∥Proceedings of Con-vegno Italiano di Logica Computazionale(CILC05).Rome,Italy,2005
[11] d’Amato C,Fanizzi N,Esposito F.A dissimilarity measure for ALC description logic[C]∥Proceedings of the 21st Annual ACM Symposium of Applied Computing(SAC2006).Dijon,France,2006,2:1695-1699
[12] Fanizzi N,d’Amato C.A similarity measure for the ALN de-scription logic[C]∥Proceedings of Convegno Italiano di Logica Computazionale(CILC06).Bari,Italy,2006
[13] Janowicz K.Sim-DL:Towards a semantic similarity theory for the description logic ALCNR in geographic information retrieval[C]∥Lecture Notes in Computers Science 4278.Springer,2006:1681-1692
[14] Janowicz K,Wilkes M.SIM-DLA:A novel semantic similarity measure for description logics reducing inter-concept to inter-instance similarity[C]∥Lecture Notes in Computers Science 5554.Springer,2009:353-367
[15] Gomez-Albarran M,Gonzalez-Calero P,Diaz-Agudo B,et al.Modelling the CBR life cycle using description logics[C]∥Lecture Notes in Computers Science 1650.1999:147-161
[16] Baader F,Calvanese D,McGuinness D.The description logichandbook:theory,implementation and applications[M].Cambridge University Press,2003
[17] Brandt S,Küsters R,Turhan A Y.Approximating ALCN-Concept Descriptions[C]∥Proc.of the 2002Int.Workshop on Description Logics.2002
[18] 常亮,王娟,古天龙,等.时态描述逻辑ALC-LTL的Tableau判定算法[J].计算机科学,2011,8(8):150-154
[19] 蒋运承,汤庸,王驹,等.面向语义Web的描述逻辑[J].模式识别与人工智能,2007,20(1):48-54
[20] 常亮,史忠植,陈立民,等.一类扩展的动态描述逻辑[J].软件学报,2010,21(1):1-13
[21] Stanchev L.On efficient access to knowledge bases[C]∥Proceedings of The 20th Midwest Artificial Intelligence and Cognitive Science Conference.Indiana University-Purdue University Fort Wayne,Fort Wayne,2009
[22] Sanchez-Ruiz A A,Ontanon S,Gonzalez-Calero P A,et al.Mea-suring similarity in description logics using refinement operators[C]∥Lecture Notes in Artificial Intelligence 6880.Springer,2011:289-303
[23] Larson J,Michalski R S.Inductive inference of VL decision rules[J].ACM SIGART Bulletin,1977(63):38-44
[24] 鞠可一,周德群,吴君民.混合概念格在案例相似性度量中的应用[J].控制与决策,2010,25(7):987-992

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!