计算机科学 ›› 2014, Vol. 41 ›› Issue (5): 50-54.doi: 10.11896/j.issn.1002-137X.2014.05.011

• 2013容错计算 • 上一篇    下一篇

准完全最大距离伪随机测试研究

邬晟峰,吴悦,徐拾义   

  1. 上海大学计算机工程与科学学院 上海200444;上海大学计算机工程与科学学院 上海200444;上海大学计算机工程与科学学院 上海200444
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61076123)资助

Study on Quasi-perfect Maximum Distance Pseudo Random Testing

WU Sheng-feng,WU Yue and XU Shi-yi   

  • Online:2018-11-14 Published:2018-11-14

摘要: 对超大规模集成电路进行随机测试的测试码之间的距离作了定量分析,在此基础上,改进了最大距离随机测试算法中测试码的生成方法,使得所生成的伪随机测试码集合同时达到最大海明距离与近似最大笛卡尔距离。因此每一个测试码可以尽可能多地独立检测到更多不重复的故障。进而提出了准完全最大距离测试新算法的思想和构建理论,并详细阐述了该算法的执行流程。在ISCAS'85基准电路上进行的大量实验数据分析表明,本方法确实有效地提高了随机测试效率,降低了随机测试成本。

Abstract: This paper improved maximum distance random testing essentially based on quantitative analysis of the maximum distance between two test patterns in pseudorandom testing for VLSI.The test sequence generated by the proposed algorithm,called quasi-perfect maximum distance testing algorithm,can reach both maximum Hamming distance and quasi-maximum Cartesian distance so that each test pattern may detect as many different faults as possible.The idea of this algorithm for generating the new test sequence was described in detail.Experiment results on ISCAS’ 85benchmarks indicate that this approach can highly increase the efficiency of pseudo random testing.

[1] Bardell P H,McAnney W H,Savir J.Built-in test for VLSIpseudorandom Techniques [M].NY,USA:John Wiley & Sons,1987
[2] Dasgupta P,Chattopadhyay S,Chaudhuri P P,et al.Cellular automata-based recursive pseudoexhaustive test pattern generator[J].IEEE Transactions on Computers,2001,50(2):177-185
[3] Chaudhuri P P,Chowdhury D R,Nandi S,et al.Additive cellular automata:theory and applications[M].Los Alamitos,Calif.,USA:IEEE Computer Society Press,1997
[4] Wagner K D,Chin C K,McCluskey E J.Pseudorandom testing[J].IEEE Transactions on Computers,1987,C-36(3):332-343
[5] Chin C K,McCluskey E J.Test length for pseudorandom testing [J].IEEE Transactions on Computers,1987,C-36(2):252-256
[6] Dan L,Jone W B.Pseudorandom test-length analysis using differential solutions [J].IEEE Transactions on Computer-Aided D esign of Integrated Circuits and Systems,1996,15(7):815-825
[7] Seth S C,Agrawal V D,Farhat H.A statistical theory of digital circuit testability [J].IEEE Transactions on Computers,1990,39(4):582-586
[8] Majumdar A,Vrudhula S B K.Fault coverage and test lengthestimation for random pattern testing [J].IEEE Transactions on Computers,1995,44(2):234-247
[9] Pradhan D K,Chatterjee M.GLFSR-a new test pattern generator for built-in-self-test [J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1999,18(2):238-247
[10] Pradhan D K,Kagaris D,Gambhir R.A Hamming distancebased test pattern generator with improved fault coverage[C]∥Proceedings of the IOLTS.French Riviera,France,2005:221-226
[11] Xu Shi-yi,Chen Jian-wen.Maximum distance testing[C]∥Proceedings of IEEE the 11th Asian Test Symposium (ATS’2002).Guam,USA,2002:15-20
[12] Xu Shi-yi.Orderly random testing for both hardware and sof-tware [C]∥Proceedings of 14th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’2008).Taipei,Taiwan,2008:160-167
[13] Xu Shi-yi.A quasi best random testing[C]∥Proceeding of IEEE the 19th.Asian Test Symposium (ATS’2010).Shanghai,China,2010:21-26
[14] Hyung K L,Dong S H.HOPE:an efficient parallel fault simulator for synchronous sequential circuits [J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1996,15(9):1048-1058

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!