计算机科学 ›› 2014, Vol. 41 ›› Issue (Z11): 61-64.

• 智能计算 • 上一篇    下一篇

基于调Q小波变换的心电信号特征量提取方法

李楠,杨昭春,孙乐君,魏荣国   

  1. 东北电力大学信息工程学院 吉林132012;东北电力大学信息工程学院 吉林132012;东北电力大学信息工程学院 吉林132012;东北电力大学信息工程学院 吉林132012
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61271115)资助

Extraction Method Based on Q Wavelet Transform of ECG Signal Characteristic

LI Nan,YANG Zhao-chun,SUN Le-jun and WEI Rong-guo   

  • Online:2018-11-14 Published:2018-11-14

摘要: 与传统的基于频域划分信号分解方法不同,提出了一种基于品质因数的自适应信号分解方法。利用调Q小波变换自适应生成品质因数不同的小波函数作为信号分解的基函数,利用Mallat塔式算法将复合信号分解为具有持续振荡特性的高共振分量和具有瞬态冲击特性的低共振分量,并将其用于心电信号的特征量提取。相比于小波分析、经验模态分解等方法,该方法可以有效地去除信号中的噪声及干扰,分离频谱混叠且振荡形式不同的信号。通过数值仿真和实例分析证明了该算法的优越性。

关键词: 心电信号,调Q小波变换,品质因数

Abstract: Compared with the traditional frequency domain based on the signal decomposition method,this paper proposed a adaptive signal decomposition method based on the quality factor.Using the Q-tunable wavelet transform to adaptive generate wavelet functions with different quality factor as basis functions of signal decomposition,we decomposed the compound signal into the high resonance component with sustained oscillation properties and low resonant component with transient impact properties with Mallat algorithm and used it to extract the ecg signal characteristic.This method can remove the noise and interference of the signal effectively and separate the spectrum aliasing and different oscillation signals compared with wavelet analysis and empirical mode decomposition method and so on.The results prove the superiority of the algorithm by numerical simulation and example analysis.

Key words: ECG signal,Q wavelet transform,Quality factor

[1] Mathieu L,Yann P,Vincent J,et al.Phase-rectified signal avera-ging used to estimate the dominant frequencies in ECG signals during atrial fibrillation [J].IEEE Transactions on Bio-medical Engineering,2008,55 (11):2538-2547
[2] Fattah S A,Goswami R,Saha U K,et al.An Approach for Human Identification Based on Time and Frequency Domain Features Extracted from ECG Signals[C]∥TENCON 2011 IEEE Region 10 Conference.Nov 2011:259-263
[3] Amanipour R,Nazeran H,Reyes I,et al.The Effects of Blood Glucose Changes on Frequency-domain Measures of HRV Signalin Type 1 Diabetes[C]∥Electrical Communications and Conference on.Feb 2012:50-54
[4] Z Wei,L Hong-xing,C.Jian-chun.Adaptive filtering in phasespace for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal[J].Signal Processing,IET,2012,6(3):171-177 (下转第74页)(上接第64页)
[5] Zhao J Y,Li M,Zhang W W,et al.ECG Signal Adaptive Filtering and QRS Complex Detecting Method[C]∥2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010).Oct 2010:869-872
[6] Dash S,Shelley K H,Silverman D G,et al.Transducer Signals:A Comparative Study of Time-Frequency Methods[J].IEEE Transaction on Biomedical Engineering,2010,7(5):1099-1106
[7] Daubechies I.The wavelet transform,time-frequency localization and signal analysis[J].IEEE Transactions on Information Theory,1990,6(5):961-1005
[8] Ibaida A,Khalil I.Wavelet-Based ECG Steganography for Protecting Patient Confidential Information in Point-of-Care Systems[J].IEEE Transactions on Biomedical Engineering,2013,0(12): 3322-3330
[9] 徐晓刚,徐冠雷,王孝通,等.经验模式分解(EMD)及其应用[J].电子学报,2009,7(3):581-585
[10] Labate D,Foresta F L,Occhiuto G,et al.Empirical Mode Decomposition vs.Wavelet Decomposition for the Extraction of Respiratory Signal from Single-Channel ECG:A Comparison[J].IEEE Sensors Jouranl,2013,3(7):2666-2674
[11] Khaldi K,Boudraa A O.On signals compression by EMD[J].Electronics Letters,2012,8(21):1329-1331

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!