计算机科学 ›› 2014, Vol. 41 ›› Issue (Z11): 95-99.

• 模式识别与图像处理 • 上一篇    下一篇

局部特征自适应的DM二维码结构提取方法

黄翀,郑河荣,潘翔   

  1. 浙江工业大学计算机科学与技术学院 杭州310001;浙江工业大学计算机科学与技术学院 杭州310001;浙江工业大学计算机科学与技术学院 杭州310001
  • 出版日期:2018-11-14 发布日期:2018-11-14

Adaptive Module Localization Method of Local Feature for Data Matrix Code

HUANG Chong,ZHENG He-rong and PAN Xiang   

  • Online:2018-11-14 Published:2018-11-14

摘要: 针对非规则变形导致DM码图像解码率低的问题,提出了通过边缘梯度特征来进行自适应定位的方法,该方法显著提高了结构提取准确率。算法主要由以下3步组成:首先,算法根据DM码的轮廓特征进行L形定位,得到DM码的包围盒位置;其次,通过外轮廓虚线部分估计出条码规格,形成标准编码结构点阵,并通过仿射变换得到点阵在当前位置的映射点;最后,针对非规则变形所导致的定位点不准确,使得仿射变换无法得到正确结果的问题,采用局部边缘特征进行自适应调整,使得点阵分布能够重建出原始编码结构。在实验部分,对大量二维条码图片进行解码测试。结果表明,本算法能够适用于失真非常明显的图片,解码准确率从已有方法的93.5%提高到98.5%。

关键词: 二维条码,非规则变形,结构提取,局部特征,边缘梯度

Abstract: In order to solve the problem of low decoding rate of data matrix image by irregular deformation,this paper proposed an adaptive localization method by edge gradient feature.The algorithm can significantly improve the accuracy of localization.The algorithm consists of the following three steps.Firstly,according to the contour feature of DM code,it locates “L” shape to get the position of the code.Secondly,it estimates the number of code blocks by detecting the dashed line and locates mapping points by affine transformation.Finally,local adjusting is performed to correct irregular deformation by edge gradient feature.In consequence,the original code can be reconstructed.In experiments,we tested decoding by a variety of data matrix code images.The results show that this algorithm can be applied to images in high distortion and decoding accuracy.The decoding accuracy can be greatly improved from 93% to 98%.

Key words: 2D Barcode,Irregular deformation,Structure extraction,Local feature,Edge gradient

[1] Meng Jian,Yang Yang.Application of Mobile 2D Barcode inChina[C]∥Fourth International Conference on Wireless Communications,Networking and Mobile Computing.2008:1-4
[2] Moss C,Chakrabarti S,Scott D W.Parts Quality Management:Direct Part Marking of Data Matrix Symbol for Mission Assurance[C]∥Aerospace Conference.2013:1-12
[3] Zhang Chang-nian,Ma Ling,Mao Dong.A 2D Barcode Recognition System Based on Image Processing[C]∥The 2011 International Conference on Electric and Electronics.2011:20-22
[4] Lu Xiao-nan,Kataria S,Brouwer W J,et al.Automated analysis of images in documents for intelligent document search[J].International Journal on Document Analysis and Recognition(IJDAR),2009,12(2):65-81
[5] 刘宁钟,杨静宇.基于迭代计算的二值波形反卷积[J].中国图象图形学报,2004,9(10):1160-1161
[6] 郝云峰,戚飞虎,蒋人杰.一种新的基于机器学习的2维条形码检测算法[J].中国图象图形学报,2007,12(10):1873-1876
[7] 刘慧娟.快速响应码图像的全方位识别[J].仪器仪表学报,2006,27(4):376-381
[8] Cheng Yuan-fei.A Scanning Method for Dotted Data Matrix[C]∥Eighth International Conference on Intelligent Systems Design and Applications.2008:179-183
[9] 姚林昌,白瑞林,钱勇,等.一种Data Matrix条码的快速识别方法[J].计算机应用研究,2011,28(11):4368-4370
[10] 刘宁钟,杨静宇.基于中点检测的二维条码识别[J].小型微型计算机系统,2004,25(2):283-287
[11] 刘慧娟.一种快速响应码图像的分割和校正方法[J].电子测量与仪器学报,2006,20(1):32-36
[12] 刘宁钟,尤海英,孙涵.基于手机平台的DataMatrix2维条码识别[J].中国图象图形学报,2010,15(2):287-294
[13] 刘宁钟,杨静宇,杨健.综合利用投影算法和相似距离算法的二维条码识别[J].模式识别与人工智能,2003,16(1):86-91
[14] 黄书海,殷建平,祝恩,等.基于局部透视变换的圆柱体侧表面PDF417条码矫正方法[J].计算机工程与科学,2012,34(9):94-99

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!