计算机科学 ›› 2016, Vol. 43 ›› Issue (Z6): 64-67.doi: 10.11896/j.issn.1002-137X.2016.6A.014

• 智能计算 • 上一篇    下一篇

基于状态概率转移的SIRS病毒传播模型及其临界值分析

顾海俊,蒋国平,夏玲玲   

  1. 南京邮电大学计算机学院 南京210003,南京邮电大学自动化学院 南京210003,南京邮电大学计算机学院 南京210003
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61374180,6),教育部人文社会科学研究规划基金(12YJAZH120),江苏省“六大人才高峰”(RLD201212)资助

SIRS Epidemic Model and its Threshold Based on State Transition Probability

GU Hai-jun, JIANG Guo-ping and XIA Ling-ling   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对SIRS(Susceptible-Infected-Removed-Susceptible)病毒传播模型,利用状态转移概率的方法,通过计算节点处于各个状态的概率来研究SIRS病毒传播过程。首先建立状态概率方程组,描述各个时刻各个节点处于易感染态、感染态、免疫态的概率,通过稳态分析理论推导网络的病毒传播临界值;然后利用蒙特卡罗方法,对均匀网络和非均匀网络的病毒传播临界值进行分析和仿真。结果表明,相对于传统的平均场方法,基于状态概率方程组模型求得的传播临界值更加接近真实蒙特卡罗值,并且与免疫丧失率无关。

关键词: 传播临界值,概率方程组,SIRS模型,平均场方法

Abstract: For SIRS (Susceptible-Infected-Removed-Susceptible) epidemic model,we used the method of state transition probability to study the SIRS epidemic process through calculating the probability in each state over time.First,we established state probability equations to describe the probability in susceptible state,infection state and immune state of each node at each moment.Then,we derived the epidemic threshold of SIRS model by the theory of steady state analysis.Finally,using the Monte Carlo method,we analyzed and simulated the epidemic threshold in both homogeneous network and heterogeneous network.Compared with the traditional mean-field method,the simulation results show that the threshold obtained by the state probability equations is much closer to real Monte Carlo value and has no relations with the immune deficiency rate.

Key words: Epidemic threshold,Probability equations,SIRS model,Mean-field method

[1] Zhou Tao,Liu Jian-guo,Bai Wen-jie,et al.Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity[J].Physical Review E,2006,74(5):056109
[2] Shi Hong-jing,Duan Zhi-sheng,Chen Guang-rong.An SIS model with infective medium on complex networks[J].Physica A:Statistical Mechanics and its Applications,2008,387(8):2133-2144
[3] Wang Jia-zeng,Liu Zeng-rong,Xu Jian-hua.Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission[J].Physica A:Statistical Mechanics and its Applications,2007,382(2):715-721
[4] Da Silva R,Fernandes H A.A study of the influence of the mobility on the phase transitions of the synchronous SIR model[J].Journal of Statistical Mechanics:Theory and Experiment,2015,5(6):P06011
[5] 马之恩,周义仓,王稳地.传染病动力学的数学建模与研究[M].北京:科学出版社,2004
[6] 巩永旺.考虑个体行为的复杂网络病毒传播研究[D].南京:南京邮电大学,2014
[7] 侯鹏锋,赵海兴.一种星-树结构的确定性的小世界网络[J].计算机科学与应用,2014(4):276-281
[8] 胡耀光,王圣军,金涛,等.度关联无标度网络上的有倾向随机行走[J].物理学报,2015,4(2):028901-028901
[9] 王亚奇,蒋国平.复杂网络中考虑不完全免疫的病毒传播研究[J].物理学报,2010,59(10):6734-6743
[10] Pastor-Satorras R,Vespignani A.Epidemic dynamics and endemic states in complex networks[J].Physical Review E,2001,63(6):066117
[11] Pastor-Satorras R,Vespignani A.Epidemic spreading in scale-free networks[J].Physical review letters,2001,86(14):3200-3203
[12] May R M,Lloyd A L.Infection dynamics on scale-free networks[J].Physical Review E,2001,64(6):066112
[13] Yang Rui,Wang Bing-hong,Ren Jie,et al.Epidemic spreading on heterogeneous networks with identical infectivity[J].Physics Letters A,2007,364(3):189-193
[14] Moore C,Newman M E J.Epidemics and percolation in small-world networks[J].Physical Review E,2000,61(5):5678
[15] Stone T,McKay S.Critical behavior of disease spread on dyna-mic small-world networks [J].Europhysics Letters,2011,5(3):38003
[16] Boguá M,Pastor-Satorras R,Vespignani A.Absence of epi-demic threshold in scale-free networks with degree correlations[J].Physical review letters,2003,90(2):028701
[17] Chakrabarti D,Wang Y,Wang C,et al.Epidemic thresholds in real networks[J].ACM Transactions on Information and System Security (TISSEC),2008,10(4):1
[18] Moreno Y,Gómez J B,Pacheco A F.Epidemic incidence in correlated complex networks[J].Physical Review E,2003,68(3):035103
[19] Barthélemy M,Barrat A,Pastor-Satorras R,et al.Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Physical Review Letters,2004,92(17):178701
[20] Guerra B,Gómez-Gardees J.Annealed and mean-field formulations of disease dynamics on static and adaptive networks[J].Physical Review E,2010,82(3):035101
[21] Smilkov D,Kocarev L.Influence of the network topology on epidemic spreading[J].Physical Review E,2012,85(1):016114
[22] Eslahchi C,Movahedi F.Calculation of transition probabilities in the birth and death Markov process in the epidemic model[J].Mathematical and Computer Modelling,2012,55(3):810-815
[23] Trpevski D,Tang W K S,Kocarev L.Model for rumor spreading over networks[J].Physical Review E,2010,81(5):056102
[24] 李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!